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CHAPTER

ONE

A FIRST LOOK AT THE KALMAN FILTER

Contents

• A First Look at the Kalman Filter

– Overview

– The Basic Idea

– Convergence

– Implementation

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

1.1 Overview

This lecture provides a simple and intuitive introduction to the Kalman filter, for those who either
• have heard of the Kalman filter but don’t know how it works, or
• know the Kalman filter equations, but don’t know where they come from

For additional (more advanced) reading on the Kalman filter, see
• [Ljungqvist and Sargent, 2018], section 2.7
• [Anderson and Moore, 2005]

The second reference presents a comprehensive treatment of the Kalman filter.
Required knowledge: Familiarity with matrix manipulations, multivariate normal distributions, covariance matrices, etc.
We’ll need the following imports:

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
from scipy import linalg
import numpy as np
import matplotlib.cm as cm

(continues on next page)
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(continued from previous page)

from quantecon import Kalman, LinearStateSpace
from scipy.stats import norm
from scipy.integrate import quad
from scipy.linalg import eigvals

1.2 The Basic Idea

The Kalman filter has many applications in economics, but for now let’s pretend that we are rocket scientists.
A missile has been launched from country Y and our mission is to track it.
Let 𝑥 ∈ ℝ2 denote the current location of the missile—a pair indicating latitude-longitude coordinates on a map.
At the present moment in time, the precise location 𝑥 is unknown, but we do have some beliefs about 𝑥.
One way to summarize our knowledge is a point prediction ̂𝑥

• But what if the President wants to know the probability that the missile is currently over the Sea of Japan?
• Then it is better to summarize our initial beliefs with a bivariate probability density 𝑝

– ∫𝐸 𝑝(𝑥)𝑑𝑥 indicates the probability that we attach to the missile being in region 𝐸.
The density 𝑝 is called our prior for the random variable 𝑥.
To keep things tractable in our example, we assume that our prior is Gaussian.
In particular, we take

𝑝 = 𝑁( ̂𝑥, Σ) (1.1)

where ̂𝑥 is the mean of the distribution and Σ is a 2 × 2 covariance matrix. In our simulations, we will suppose that

̂𝑥 = ( 0.2
−0.2 ) , Σ = ( 0.4 0.3

0.3 0.45 ) (1.2)

This density 𝑝(𝑥) is shown below as a contour map, with the center of the red ellipse being equal to ̂𝑥.

# Set up the Gaussian prior density p
Σ = [[0.4, 0.3], [0.3, 0.45]]
Σ = np.matrix(Σ)
x_hat = np.matrix([0.2, -0.2]).T
# Define the matrices G and R from the equation y = G x + N(0, R)
G = [[1, 0], [0, 1]]
G = np.matrix(G)
R = 0.5 * Σ
# The matrices A and Q
A = [[1.2, 0], [0, -0.2]]
A = np.matrix(A)
Q = 0.3 * Σ
# The observed value of y
y = np.matrix([2.3, -1.9]).T

# Set up grid for plotting
x_grid = np.linspace(-1.5, 2.9, 100)
y_grid = np.linspace(-3.1, 1.7, 100)
X, Y = np.meshgrid(x_grid, y_grid)

(continues on next page)
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def bivariate_normal(x, y, σ_x=1.0, σ_y=1.0, μ_x=0.0, μ_y=0.0, σ_xy=0.0):
"""
Compute and return the probability density function of bivariate normal
distribution of normal random variables x and y

Parameters
----------
x : array_like(float)

Random variable

y : array_like(float)
Random variable

σ_x : array_like(float)
Standard deviation of random variable x

σ_y : array_like(float)
Standard deviation of random variable y

μ_x : scalar(float)
Mean value of random variable x

μ_y : scalar(float)
Mean value of random variable y

σ_xy : array_like(float)
Covariance of random variables x and y

"""

x_μ = x - μ_x
y_μ = y - μ_y

ρ = σ_xy / (σ_x * σ_y)
z = x_μ**2 / σ_x**2 + y_μ**2 / σ_y**2 - 2 * ρ * x_μ * y_μ / (σ_x * σ_y)
denom = 2 * np.pi * σ_x * σ_y * np.sqrt(1 - ρ**2)
return np.exp(-z / (2 * (1 - ρ**2))) / denom

def gen_gaussian_plot_vals(μ, C):
"Z values for plotting the bivariate Gaussian N(μ, C)"
m_x, m_y = float(μ[0]), float(μ[1])
s_x, s_y = np.sqrt(C[0, 0]), np.sqrt(C[1, 1])
s_xy = C[0, 1]
return bivariate_normal(X, Y, s_x, s_y, m_x, m_y, s_xy)

# Plot the figure

fig, ax = plt.subplots(figsize=(10, 8))
ax.grid()

Z = gen_gaussian_plot_vals(x_hat, Σ)
ax.contourf(X, Y, Z, 6, alpha=0.6, cmap=cm.jet)
cs = ax.contour(X, Y, Z, 6, colors="black")
ax.clabel(cs, inline=1, fontsize=10)

plt.show()

1.2. The Basic Idea 7
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/tmp/ipykernel_6131/3508717107.py:61: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
m_x, m_y = float(μ[0]), float(μ[1])

1.2.1 The Filtering Step

We are now presented with some good news and some bad news.
The good news is that themissile has been located by our sensors, which report that the current location is 𝑦 = (2.3, −1.9).
The next figure shows the original prior 𝑝(𝑥) and the new reported location 𝑦

fig, ax = plt.subplots(figsize=(10, 8))
ax.grid()

Z = gen_gaussian_plot_vals(x_hat, Σ)
ax.contourf(X, Y, Z, 6, alpha=0.6, cmap=cm.jet)
cs = ax.contour(X, Y, Z, 6, colors="black")
ax.clabel(cs, inline=1, fontsize=10)
ax.text(float(y[0]), float(y[1]), "$y$", fontsize=20, color="black")

(continues on next page)

8 Chapter 1. A First Look at the Kalman Filter



Dynamic Linear Economies

(continued from previous page)

plt.show()

/tmp/ipykernel_6131/3508717107.py:61: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
m_x, m_y = float(μ[0]), float(μ[1])

/tmp/ipykernel_6131/3470248806.py:8: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
ax.text(float(y[0]), float(y[1]), "$y$", fontsize=20, color="black")

The bad news is that our sensors are imprecise.
In particular, we should interpret the output of our sensor not as 𝑦 = 𝑥, but rather as

𝑦 = 𝐺𝑥 + 𝑣, where 𝑣 ∼ 𝑁(0, 𝑅) (1.3)

Here 𝐺 and 𝑅 are 2 × 2 matrices with 𝑅 positive definite. Both are assumed known, and the noise term 𝑣 is assumed to
be independent of 𝑥.

1.2. The Basic Idea 9
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How then should we combine our prior 𝑝(𝑥) = 𝑁( ̂𝑥, Σ) and this new information 𝑦 to improve our understanding of the
location of the missile?
As you may have guessed, the answer is to use Bayes’ theorem, which tells us to update our prior 𝑝(𝑥) to 𝑝(𝑥 | 𝑦) via

𝑝(𝑥 | 𝑦) = 𝑝(𝑦 | 𝑥) 𝑝(𝑥)
𝑝(𝑦)

where 𝑝(𝑦) = ∫ 𝑝(𝑦 | 𝑥) 𝑝(𝑥)𝑑𝑥.
In solving for 𝑝(𝑥 | 𝑦), we observe that

• 𝑝(𝑥) = 𝑁( ̂𝑥, Σ).
• In view of (1.3), the conditional density 𝑝(𝑦 | 𝑥) is 𝑁(𝐺𝑥, 𝑅).
• 𝑝(𝑦) does not depend on 𝑥, and enters into the calculations only as a normalizing constant.

Because we are in a linear and Gaussian framework, the updated density can be computed by calculating population linear
regressions.
In particular, the solution is known1 to be

𝑝(𝑥 | 𝑦) = 𝑁( ̂𝑥𝐹 , Σ𝐹 )

where

̂𝑥𝐹 ∶= ̂𝑥 + Σ𝐺′(𝐺Σ𝐺′ + 𝑅)−1(𝑦 − 𝐺 ̂𝑥) and Σ𝐹 ∶= Σ − Σ𝐺′(𝐺Σ𝐺′ + 𝑅)−1𝐺Σ (1.4)

Here Σ𝐺′(𝐺Σ𝐺′ + 𝑅)−1 is the matrix of population regression coefficients of the hidden object 𝑥 − ̂𝑥 on the surprise
𝑦 − 𝐺 ̂𝑥.
This new density 𝑝(𝑥 | 𝑦) = 𝑁( ̂𝑥𝐹 , Σ𝐹 ) is shown in the next figure via contour lines and the color map.
The original density is left in as contour lines for comparison

fig, ax = plt.subplots(figsize=(10, 8))
ax.grid()

Z = gen_gaussian_plot_vals(x_hat, Σ)
cs1 = ax.contour(X, Y, Z, 6, colors="black")
ax.clabel(cs1, inline=1, fontsize=10)
M = Σ * G.T * linalg.inv(G * Σ * G.T + R)
x_hat_F = x_hat + M * (y - G * x_hat)
Σ_F = Σ - M * G * Σ
new_Z = gen_gaussian_plot_vals(x_hat_F, Σ_F)
cs2 = ax.contour(X, Y, new_Z, 6, colors="black")
ax.clabel(cs2, inline=1, fontsize=10)
ax.contourf(X, Y, new_Z, 6, alpha=0.6, cmap=cm.jet)
ax.text(float(y[0]), float(y[1]), "$y$", fontsize=20, color="black")

plt.show()

/tmp/ipykernel_6131/3508717107.py:61: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
m_x, m_y = float(μ[0]), float(μ[1])

(continues on next page)
1 See, for example, page 93 of [Bishop, 2006]. To get from his expressions to the ones used above, you will also need to apply the Woodbury matrix

identity.
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(continued from previous page)

/tmp/ipykernel_6131/792457825.py:14: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
ax.text(float(y[0]), float(y[1]), "$y$", fontsize=20, color="black")

Our new density twists the prior 𝑝(𝑥) in a direction determined by the new information 𝑦 − 𝐺 ̂𝑥.
In generating the figure, we set 𝐺 to the identity matrix and 𝑅 = 0.5Σ for Σ defined in (1.2).

1.2.2 The Forecast Step

What have we achieved so far?
We have obtained probabilities for the current location of the state (missile) given prior and current information.
This is called “filtering” rather than forecasting because we are filtering out noise rather than looking into the future.

• 𝑝(𝑥 | 𝑦) = 𝑁( ̂𝑥𝐹 , Σ𝐹 ) is called the filtering distribution
But now let’s suppose that we are given another task: to predict the location of the missile after one unit of time (whatever
that may be) has elapsed.
To do this we need a model of how the state evolves.

1.2. The Basic Idea 11
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Let’s suppose that we have one, and that it’s linear and Gaussian. In particular,

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝑤𝑡+1, where 𝑤𝑡 ∼ 𝑁(0, 𝑄) (1.5)

Our aim is to combine this law of motion and our current distribution 𝑝(𝑥 | 𝑦) = 𝑁( ̂𝑥𝐹 , Σ𝐹 ) to come up with a new
predictive distribution for the location in one unit of time.
In view of (1.5), all we have to do is introduce a random vector 𝑥𝐹 ∼ 𝑁( ̂𝑥𝐹 , Σ𝐹 ) and work out the distribution of
𝐴𝑥𝐹 + 𝑤 where 𝑤 is independent of 𝑥𝐹 and has distribution 𝑁(0, 𝑄).
Since linear combinations of Gaussians are Gaussian, 𝐴𝑥𝐹 + 𝑤 is Gaussian.
Elementary calculations and the expressions in (1.4) tell us that

𝔼[𝐴𝑥𝐹 + 𝑤] = 𝐴𝔼𝑥𝐹 + 𝔼𝑤 = 𝐴 ̂𝑥𝐹 = 𝐴 ̂𝑥 + 𝐴Σ𝐺′(𝐺Σ𝐺′ + 𝑅)−1(𝑦 − 𝐺 ̂𝑥)

and

Var[𝐴𝑥𝐹 + 𝑤] = 𝐴Var[𝑥𝐹 ]𝐴′ + 𝑄 = 𝐴Σ𝐹 𝐴′ + 𝑄 = 𝐴Σ𝐴′ − 𝐴Σ𝐺′(𝐺Σ𝐺′ + 𝑅)−1𝐺Σ𝐴′ + 𝑄

The matrix 𝐴Σ𝐺′(𝐺Σ𝐺′ + 𝑅)−1 is often written as 𝐾Σ and called the Kalman gain.
• The subscript Σ has been added to remind us that 𝐾Σ depends on Σ, but not 𝑦 or ̂𝑥.

Using this notation, we can summarize our results as follows.
Our updated prediction is the density 𝑁( ̂𝑥𝑛𝑒𝑤, Σ𝑛𝑒𝑤) where

̂𝑥𝑛𝑒𝑤 ∶= 𝐴 ̂𝑥 + 𝐾Σ(𝑦 − 𝐺 ̂𝑥)
Σ𝑛𝑒𝑤 ∶= 𝐴Σ𝐴′ − 𝐾Σ𝐺Σ𝐴′ + 𝑄

• The density 𝑝𝑛𝑒𝑤(𝑥) = 𝑁( ̂𝑥𝑛𝑒𝑤, Σ𝑛𝑒𝑤) is called the predictive distribution
The predictive distribution is the new density shown in the following figure, where the update has used parameters.

𝐴 = ( 1.2 0.0
0.0 −0.2 ) , 𝑄 = 0.3 ∗ Σ

fig, ax = plt.subplots(figsize=(10, 8))
ax.grid()

# Density 1
Z = gen_gaussian_plot_vals(x_hat, Σ)
cs1 = ax.contour(X, Y, Z, 6, colors="black")
ax.clabel(cs1, inline=1, fontsize=10)

# Density 2
M = Σ * G.T * linalg.inv(G * Σ * G.T + R)
x_hat_F = x_hat + M * (y - G * x_hat)
Σ_F = Σ - M * G * Σ
Z_F = gen_gaussian_plot_vals(x_hat_F, Σ_F)
cs2 = ax.contour(X, Y, Z_F, 6, colors="black")
ax.clabel(cs2, inline=1, fontsize=10)

# Density 3
new_x_hat = A * x_hat_F
new_Σ = A * Σ_F * A.T + Q
new_Z = gen_gaussian_plot_vals(new_x_hat, new_Σ)
cs3 = ax.contour(X, Y, new_Z, 6, colors="black")

(continues on next page)
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ax.clabel(cs3, inline=1, fontsize=10)
ax.contourf(X, Y, new_Z, 6, alpha=0.6, cmap=cm.jet)
ax.text(float(y[0]), float(y[1]), "$y$", fontsize=20, color="black")

plt.show()

/tmp/ipykernel_6131/3508717107.py:61: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
m_x, m_y = float(μ[0]), float(μ[1])

/tmp/ipykernel_6131/3056082785.py:24: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
ax.text(float(y[0]), float(y[1]), "$y$", fontsize=20, color="black")
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Dynamic Linear Economies

1.2.3 The Recursive Procedure

Let’s look back at what we’ve done.
We started the current period with a prior 𝑝(𝑥) for the location 𝑥 of the missile.
We then used the current measurement 𝑦 to update to 𝑝(𝑥 | 𝑦).
Finally, we used the law of motion (1.5) for {𝑥𝑡} to update to 𝑝𝑛𝑒𝑤(𝑥).
If we now step into the next period, we are ready to go round again, taking 𝑝𝑛𝑒𝑤(𝑥) as the current prior.
Swapping notation 𝑝𝑡(𝑥) for 𝑝(𝑥) and 𝑝𝑡+1(𝑥) for 𝑝𝑛𝑒𝑤(𝑥), the full recursive procedure is:

1. Start the current period with prior 𝑝𝑡(𝑥) = 𝑁( ̂𝑥𝑡, Σ𝑡).
2. Observe current measurement 𝑦𝑡.
3. Compute the filtering distribution 𝑝𝑡(𝑥 | 𝑦) = 𝑁( ̂𝑥𝐹

𝑡 , Σ𝐹
𝑡 ) from 𝑝𝑡(𝑥) and 𝑦𝑡, applying Bayes rule and the condi-

tional distribution (1.3).
4. Compute the predictive distribution 𝑝𝑡+1(𝑥) = 𝑁( ̂𝑥𝑡+1, Σ𝑡+1) from the filtering distribution and (1.5).
5. Increment 𝑡 by one and go to step 1.

Repeating (1.6), the dynamics for ̂𝑥𝑡 and Σ𝑡 are as follows

̂𝑥𝑡+1 = 𝐴 ̂𝑥𝑡 + 𝐾Σ𝑡
(𝑦𝑡 − 𝐺 ̂𝑥𝑡)

Σ𝑡+1 = 𝐴Σ𝑡𝐴′ − 𝐾Σ𝑡
𝐺Σ𝑡𝐴′ + 𝑄

These are the standard dynamic equations for the Kalman filter (see, for example, [Ljungqvist and Sargent, 2018], page
58).

1.3 Convergence

The matrix Σ𝑡 is a measure of the uncertainty of our prediction ̂𝑥𝑡 of 𝑥𝑡.
Apart from special cases, this uncertainty will never be fully resolved, regardless of how much time elapses.
One reason is that our prediction ̂𝑥𝑡 is made based on information available at 𝑡 − 1, not 𝑡.
Even if we know the precise value of 𝑥𝑡−1 (which we don’t), the transition equation (1.5) implies that 𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝑤𝑡.
Since the shock𝑤𝑡 is not observable at 𝑡−1, any time 𝑡−1 prediction of 𝑥𝑡 will incur some error (unless𝑤𝑡 is degenerate).
However, it is certainly possible that Σ𝑡 converges to a constant matrix as 𝑡 → ∞.
To study this topic, let’s expand the second equation in (1.6):

Σ𝑡+1 = 𝐴Σ𝑡𝐴′ − 𝐴Σ𝑡𝐺′(𝐺Σ𝑡𝐺′ + 𝑅)−1𝐺Σ𝑡𝐴′ + 𝑄 (1.6)

This is a nonlinear difference equation in Σ𝑡.
A fixed point of (1.6) is a constant matrix Σ such that

Σ = 𝐴Σ𝐴′ − 𝐴Σ𝐺′(𝐺Σ𝐺′ + 𝑅)−1𝐺Σ𝐴′ + 𝑄 (1.7)

Equation (1.6) is known as a discrete-time Riccati difference equation.
Equation (1.7) is known as a discrete-time algebraic Riccati equation.
Conditions under which a fixed point exists and the sequence {Σ𝑡} converges to it are discussed in [Anderson et al., 1996]
and [Anderson and Moore, 2005], chapter 4.

14 Chapter 1. A First Look at the Kalman Filter

https://en.wikipedia.org/wiki/Algebraic_Riccati_equation


Dynamic Linear Economies

A sufficient (but not necessary) condition is that all the eigenvalues 𝜆𝑖 of 𝐴 satisfy |𝜆𝑖| < 1 (cf. e.g., [Anderson and
Moore, 2005], p. 77).
(This strong condition assures that the unconditional distribution of 𝑥𝑡 converges as 𝑡 → +∞.)
In this case, for any initial choice of Σ0 that is both non-negative and symmetric, the sequence {Σ𝑡} in (1.6) converges
to a non-negative symmetric matrix Σ that solves (1.7).

1.4 Implementation

The class Kalman from the QuantEcon.py package implements the Kalman filter
• Instance data consists of:

– the moments ( ̂𝑥𝑡, Σ𝑡) of the current prior.
– An instance of the LinearStateSpace class from QuantEcon.py.

The latter represents a linear state space model of the form

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝐺𝑥𝑡 + 𝐻𝑣𝑡

where the shocks 𝑤𝑡 and 𝑣𝑡 are IID standard normals.
To connect this with the notation of this lecture we set

𝑄 ∶= 𝐶𝐶′ and 𝑅 ∶= 𝐻𝐻′

• The class Kalman from the QuantEcon.py package has a number of methods, some that we will wait to use until
we study more advanced applications in subsequent lectures.

• Methods pertinent for this lecture are:
– prior_to_filtered, which updates ( ̂𝑥𝑡, Σ𝑡) to ( ̂𝑥𝐹

𝑡 , Σ𝐹
𝑡 )

– filtered_to_forecast, which updates the filtering distribution to the predictive distribution – which
becomes the new prior ( ̂𝑥𝑡+1, Σ𝑡+1)

– update, which combines the last two methods
– a stationary_values, which computes the solution to (1.7) and the corresponding (stationary) Kalman
gain

You can view the program on GitHub.

1.5 Exercises

Exercise 1.5.1
Consider the following simple application of the Kalman filter, loosely based on [Ljungqvist and Sargent, 2018], section
2.9.2.
Suppose that

• all variables are scalars
• the hidden state {𝑥𝑡} is in fact constant, equal to some 𝜃 ∈ ℝ unknown to the modeler

1.4. Implementation 15
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State dynamics are therefore given by (1.5) with 𝐴 = 1, 𝑄 = 0 and 𝑥0 = 𝜃.
The measurement equation is 𝑦𝑡 = 𝜃 + 𝑣𝑡 where 𝑣𝑡 is 𝑁(0, 1) and IID.
The task of this exercise to simulate themodel and, using the code fromkalman.py, plot the first five predictive densities
𝑝𝑡(𝑥) = 𝑁( ̂𝑥𝑡, Σ𝑡).
As shown in [Ljungqvist and Sargent, 2018], sections 2.9.1–2.9.2, these distributions asymptotically put all mass on the
unknown value 𝜃.
In the simulation, take 𝜃 = 10, ̂𝑥0 = 8 and Σ0 = 1.
Your figure should – modulo randomness – look something like this

Solution to Exercise 1.5.1

# Parameters
θ = 10 # Constant value of state x_t
A, C, G, H = 1, 0, 1, 1
ss = LinearStateSpace(A, C, G, H, mu_0=θ)

(continues on next page)
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(continued from previous page)

# Set prior, initialize kalman filter
x_hat_0, Σ_0 = 8, 1
kalman = Kalman(ss, x_hat_0, Σ_0)

# Draw observations of y from state space model
N = 5
x, y = ss.simulate(N)
y = y.flatten()

# Set up plot
fig, ax = plt.subplots(figsize=(10,8))
xgrid = np.linspace(θ - 5, θ + 2, 200)

for i in range(N):
# Record the current predicted mean and variance
m, v = [float(z) for z in (kalman.x_hat, kalman.Sigma)]
# Plot, update filter
ax.plot(xgrid, norm.pdf(xgrid, loc=m, scale=np.sqrt(v)), label=f'$t={i}$')
kalman.update(y[i])

ax.set_title(f'First {N} densities when $\\theta = {θ:.1f}$')
ax.legend(loc='upper left')
plt.show()

/tmp/ipykernel_6131/1660567565.py:21: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
m, v = [float(z) for z in (kalman.x_hat, kalman.Sigma)]
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Exercise 1.5.2
The preceding figure gives some support to the idea that probability mass converges to 𝜃.
To get a better idea, choose a small 𝜖 > 0 and calculate

𝑧𝑡 ∶= 1 − ∫
𝜃+𝜖

𝜃−𝜖
𝑝𝑡(𝑥)𝑑𝑥

for 𝑡 = 0, 1, 2, … , 𝑇 .
Plot 𝑧𝑡 against 𝑇 , setting 𝜖 = 0.1 and 𝑇 = 600.
Your figure should show error erratically declining something like this

Solution to Exercise 1.5.2

ϵ = 0.1
θ = 10 # Constant value of state x_t
A, C, G, H = 1, 0, 1, 1
ss = LinearStateSpace(A, C, G, H, mu_0=θ)

(continues on next page)
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(continued from previous page)

x_hat_0, Σ_0 = 8, 1
kalman = Kalman(ss, x_hat_0, Σ_0)

T = 600
z = np.empty(T)
x, y = ss.simulate(T)
y = y.flatten()

for t in range(T):
# Record the current predicted mean and variance and plot their densities
m, v = [float(temp) for temp in (kalman.x_hat, kalman.Sigma)]

f = lambda x: norm.pdf(x, loc=m, scale=np.sqrt(v))
integral, error = quad(f, θ - ϵ, θ + ϵ)
z[t] = 1 - integral

kalman.update(y[t])

fig, ax = plt.subplots(figsize=(9, 7))
ax.set_ylim(0, 1)
ax.set_xlim(0, T)
ax.plot(range(T), z)
ax.fill_between(range(T), np.zeros(T), z, color="blue", alpha=0.2)
plt.show()

/tmp/ipykernel_6131/3050251196.py:16: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
m, v = [float(temp) for temp in (kalman.x_hat, kalman.Sigma)]
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Exercise 1.5.3
As discussed above, if the shock sequence {𝑤𝑡} is not degenerate, then it is not in general possible to predict 𝑥𝑡 without
error at time 𝑡 − 1 (and this would be the case even if we could observe 𝑥𝑡−1).
Let’s now compare the prediction ̂𝑥𝑡 made by the Kalman filter against a competitor who is allowed to observe 𝑥𝑡−1.
This competitor will use the conditional expectation 𝔼[𝑥𝑡 | 𝑥𝑡−1], which in this case is 𝐴𝑥𝑡−1.
The conditional expectation is known to be the optimal prediction method in terms of minimizing mean squared error.
(More precisely, the minimizer of 𝔼 ‖𝑥𝑡 − 𝑔(𝑥𝑡−1)‖2 with respect to 𝑔 is 𝑔∗(𝑥𝑡−1) ∶= 𝔼[𝑥𝑡 | 𝑥𝑡−1])
Thus we are comparing the Kalman filter against a competitor who has more information (in the sense of being able to
observe the latent state) and behaves optimally in terms of minimizing squared error.
Our horse race will be assessed in terms of squared error.
In particular, your task is to generate a graph plotting observations of both ‖𝑥𝑡 − 𝐴𝑥𝑡−1‖2 and ‖𝑥𝑡 − ̂𝑥𝑡‖2 against 𝑡 for
𝑡 = 1, … , 50.
For the parameters, set 𝐺 = 𝐼, 𝑅 = 0.5𝐼 and 𝑄 = 0.3𝐼 , where 𝐼 is the 2 × 2 identity.
Set

𝐴 = ( 0.5 0.4
0.6 0.3 )
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To initialize the prior density, set

Σ0 = ( 0.9 0.3
0.3 0.9 )

and ̂𝑥0 = (8, 8).
Finally, set 𝑥0 = (0, 0).
You should end up with a figure similar to the following (modulo randomness)

Observe how, after an initial learning period, the Kalman filter performs quite well, even relative to the competitor who
predicts optimally with knowledge of the latent state.

Solution to Exercise 1.5.3

# Define A, C, G, H
G = np.identity(2)
H = np.sqrt(0.5) * np.identity(2)

A = [[0.5, 0.4],
[0.6, 0.3]]

C = np.sqrt(0.3) * np.identity(2)

# Set up state space mode, initial value x_0 set to zero
ss = LinearStateSpace(A, C, G, H, mu_0 = np.zeros(2))

(continues on next page)
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(continued from previous page)

# Define the prior density
Σ = [[0.9, 0.3],

[0.3, 0.9]]
Σ = np.array(Σ)
x_hat = np.array([8, 8])

# Initialize the Kalman filter
kn = Kalman(ss, x_hat, Σ)

# Print eigenvalues of A
print("Eigenvalues of A:")
print(eigvals(A))

# Print stationary Σ
S, K = kn.stationary_values()
print("Stationary prediction error variance:")
print(S)

# Generate the plot
T = 50
x, y = ss.simulate(T)

e1 = np.empty(T-1)
e2 = np.empty(T-1)

for t in range(1, T):
kn.update(y[:,t])
e1[t-1] = np.sum((x[:, t] - kn.x_hat.flatten())**2)
e2[t-1] = np.sum((x[:, t] - A @ x[:, t-1])**2)

fig, ax = plt.subplots(figsize=(9,6))
ax.plot(range(1, T), e1, 'k-', lw=2, alpha=0.6,

label='Kalman filter error')
ax.plot(range(1, T), e2, 'g-', lw=2, alpha=0.6,

label='Conditional expectation error')
ax.legend()
plt.show()

Eigenvalues of A:
[ 0.9+0.j -0.1+0.j]
Stationary prediction error variance:
[[0.40329108 0.1050718 ]
[0.1050718 0.41061709]]
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Exercise 1.5.4
Try varying the coefficient 0.3 in 𝑄 = 0.3𝐼 up and down.
Observe how the diagonal values in the stationary solutionΣ (see (1.7)) increase and decrease in line with this coefficient.
The interpretation is that more randomness in the law of motion for 𝑥𝑡 causes more (permanent) uncertainty in prediction.
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CHAPTER

TWO

ANOTHER LOOK AT THE KALMAN FILTER

Contents

• Another Look at the Kalman Filter
– A worker’s output

– A firm’s wage-setting policy

– A state-space representation

– An Innovations Representation

– Some Computational Experiments

– Future Extensions

In this quantecon lecture A First Look at the Kalman filter, we used a Kalman filter to estimate locations of a rocket.
In this lecture, we’ll use the Kalman filter to infer a worker’s human capital and the effort that the worker devotes to
accumulating human capital, neither of which the firm observes directly.
The firm learns about those things only by observing a history of the output that the worker generates for the firm, and
from understanding how that output depends on the worker’s human capital and how human capital evolves as a function
of the worker’s effort.
We’ll posit a rule that expresses how the much firm pays the worker each period as a function of the firm’s information
each period.
In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

To conduct simulations, we bring in these imports, as in A First Look at the Kalman filter.

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import numpy as np
from quantecon import Kalman, LinearStateSpace
from collections import namedtuple
from scipy.stats import multivariate_normal
import matplotlib as mpl

mpl.rcParams['text.usetex'] = True
mpl.rcParams['text.latex.preamble'] = r'\usepackage{{amsmath}}'
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2.1 A worker’s output

A representative worker is permanently employed at a firm.
The workers’ output is described by the following dynamic process:

ℎ𝑡+1 = 𝛼ℎ𝑡 + 𝛽𝑢𝑡 + 𝑐𝑤𝑡+1, 𝑐𝑡+1 ∼ 𝒩(0, 1)
𝑢𝑡+1 = 𝑢𝑡

𝑦𝑡 = 𝑔ℎ𝑡 + 𝑣𝑡, 𝑣𝑡 ∼ 𝒩(0, 𝑅)
(2.1)

Here
• ℎ𝑡 is the logarithm of human capital at time 𝑡
• 𝑢𝑡 is the logarithm of the worker’s effort at accumulating human capital at 𝑡
• 𝑦𝑡 is the logarithm of the worker’s output at time 𝑡
• ℎ0 ∼ 𝒩(ℎ̂0, 𝜎ℎ,0)
• 𝑢0 ∼ 𝒩(𝑢̂0, 𝜎𝑢,0)

Parameters of the model are 𝛼, 𝛽, 𝑐, 𝑅, 𝑔, ℎ̂0, 𝑢̂0, 𝜎ℎ, 𝜎𝑢.
At time 0, a firm has hired the worker.
The worker is permanently attached to the firm and so works for the same firm at all dates 𝑡 = 0, 1, 2, ….
At the beginning of time 0, the firm observes neither the worker’s innate initial human capital ℎ0 nor its hard-wired
permanent effort level 𝑢0.
The firm believes that 𝑢0 for a particular worker is drawn from a Gaussian probability distribution, and so is described by
𝑢0 ∼ 𝒩(𝑢̂0, 𝜎𝑢,0).
The ℎ𝑡 part of a worker’s “type” moves over time, but the effort component of the worker’s type is 𝑢𝑡 = 𝑢0.
This means that from the firm’s point of view, the worker’s effort is effectively an unknown fixed “parameter”.
At time 𝑡 ≥ 1, for a particular worker the firm observed 𝑦𝑡−1 = [𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦0].
The firm does not observe the worker’s “type” (ℎ0, 𝑢0).
But the firm does observe the worker’s output 𝑦𝑡 at time 𝑡 and remembers the worker’s past outputs 𝑦𝑡−1.

2.2 A firm’s wage-setting policy

Based on information about the worker that the firm has at time 𝑡 ≥ 1, the firm pays the worker log wage

𝑤𝑡 = 𝑔𝐸[ℎ𝑡|𝑦𝑡−1], 𝑡 ≥ 1

and at time 0 pays the worker a log wage equal to the unconditional mean of 𝑦0:

𝑤0 = 𝑔ℎ̂0

In using this payment rule, the firm is taking into account that the worker’s log output today is partly due to the random
component 𝑣𝑡 that comes entirely from luck, and that is assumed to be independent of ℎ𝑡 and 𝑢𝑡.

26 Chapter 2. Another Look at the Kalman Filter



Dynamic Linear Economies

2.3 A state-space representation

Write system (2.1.1) in the state-space form

[ℎ𝑡+1
𝑢𝑡+1

] = [𝛼 𝛽
0 1] [ℎ𝑡

𝑢𝑡
] + [𝑐

0] 𝑤𝑡+1

𝑦𝑡 = [𝑔 0] [ℎ𝑡
𝑢𝑡

] + 𝑣𝑡

which is equivalent with

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝐺𝑥𝑡 + 𝑣𝑡
𝑥0 ∼ 𝒩( ̂𝑥0, Σ0)

(2.2)

where

𝑥𝑡 = [ℎ𝑡
𝑢𝑡

] , ̂𝑥0 = [ℎ̂0
𝑢̂0

] , Σ0 = [𝜎ℎ,0 0
0 𝜎𝑢,0

]

To compute the firm’s wage setting policy, we first we create a namedtuple to store the parameters of the model

WorkerModel = namedtuple("WorkerModel",
('A', 'C', 'G', 'R', 'xhat_0', 'Σ_0'))

def create_worker(α=.8, β=.2, c=.2,
R=.5, g=1.0, hhat_0=4, uhat_0=4,
σ_h=4, σ_u=4):

A = np.array([[α, β],
[0, 1]])

C = np.array([[c],
[0]])

G = np.array([g, 1])

# Define initial state and covariance matrix
xhat_0 = np.array([[hhat_0],

[uhat_0]])

Σ_0 = np.array([[σ_h, 0],
[0, σ_u]])

return WorkerModel(A=A, C=C, G=G, R=R, xhat_0=xhat_0, Σ_0=Σ_0)

Please note how the WorkerModel namedtuple creates all of the objects required to compute an associated state-space
representation (2.2).
This is handy, because in order to simulate a history {𝑦𝑡, ℎ𝑡} for a worker, we’ll want to form state space system for
him/her by using the LinearStateSpace class.

# Define A, C, G, R, xhat_0, Σ_0
worker = create_worker()
A, C, G, R = worker.A, worker.C, worker.G, worker.R
xhat_0, Σ_0 = worker.xhat_0, worker.Σ_0

# Create a LinearStateSpace object

(continues on next page)
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(continued from previous page)

ss = LinearStateSpace(A, C, G, np.sqrt(R),
mu_0=xhat_0, Sigma_0=np.zeros((2,2)))

T = 100
x, y = ss.simulate(T)
y = y.flatten()

h_0, u_0 = x[0, 0], x[1, 0]

Next, to compute the firm’s policy for setting the log wage based on the information it has about the worker, we use the
Kalman filter described in this quantecon lecture A First Look at the Kalman filter.
In particular, we want to compute all of the objects in an “innovation representation”.

2.4 An Innovations Representation

We have all the objects in hand required to form an innovations representation for the output process {𝑦𝑡}𝑇
𝑡=0 for a worker.

Let’s code that up now.

̂𝑥𝑡+1 = 𝐴 ̂𝑥𝑡 + 𝐾𝑡𝑎𝑡
𝑦𝑡 = 𝐺 ̂𝑥𝑡 + 𝑎𝑡

where 𝐾𝑡 is the Kalman gain matrix at time 𝑡.
We accomplish this in the following code that uses the Kalman class.

kalman = Kalman(ss, xhat_0, Σ_0)
Σ_t = np.zeros((*Σ_0.shape, T-1))
y_hat_t = np.zeros(T-1)
x_hat_t = np.zeros((2, T-1))

for t in range(1, T):
kalman.update(y[t])
x_hat, Σ = kalman.x_hat, kalman.Sigma
Σ_t[:, :, t-1] = Σ
x_hat_t[:, t-1] = x_hat.reshape(-1)
y_hat_t[t-1] = worker.G @ x_hat

x_hat_t = np.concatenate((x[:, 1][:, np.newaxis],
x_hat_t), axis=1)

Σ_t = np.concatenate((worker.Σ_0[:, :, np.newaxis],
Σ_t), axis=2)

u_hat_t = x_hat_t[1, :]

/tmp/ipykernel_6165/2927621375.py:11: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
y_hat_t[t-1] = worker.G @ x_hat

For a draw of ℎ0, 𝑢0, we plot 𝐸𝑦𝑡 = 𝐺 ̂𝑥𝑡 where ̂𝑥𝑡 = 𝐸[𝑥𝑡|𝑦𝑡−1].
We also plot 𝐸[𝑢0|𝑦𝑡−1], which is the firm inference about a worker’s hard-wired “work ethic” 𝑢0, conditioned on infor-
mation 𝑦𝑡−1 that it has about him or her coming into period 𝑡.
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We can watch as the firm’s inference 𝐸[𝑢0|𝑦𝑡−1] of the worker’s work ethic converges toward the hidden 𝑢0, which is not
directly observed by the firm.

fig, ax = plt.subplots(1, 2)

ax[0].plot(y_hat_t, label=r'$E[y_t| y^{t-1}]$')
ax[0].set_xlabel('Time')
ax[0].set_ylabel(r'$E[y_t]$')
ax[0].set_title(r'$E[y_t]$ over time')
ax[0].legend()

ax[1].plot(u_hat_t, label=r'$E[u_t|y^{t-1}]$')
ax[1].axhline(y=u_0, color='grey',

linestyle='dashed', label=fr'$u_0={u_0:.2f}$')
ax[1].set_xlabel('Time')
ax[1].set_ylabel(r'$E[u_t|y^{t-1}]$')
ax[1].set_title('Inferred work ethic over time')
ax[1].legend()

fig.tight_layout()
plt.show()

2.5 Some Computational Experiments

Let’s look at Σ0 and Σ𝑇 in order to see how much the firm learns about the hidden state during the horizon we have set.

print(Σ_t[:, :, 0])

[[4. 0.]
[0. 4.]]

print(Σ_t[:, :, -1])
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[[0.08805027 0.00100377]
[0.00100377 0.00398351]]

Evidently, entries in the conditional covariance matrix become smaller over time.
It is enlightening to portray how conditional covariance matrices Σ𝑡 evolve by plotting confidence ellipsoides around
𝐸[𝑥𝑡|𝑦𝑡−1] at various 𝑡’s.

# Create a grid of points for contour plotting
h_range = np.linspace(x_hat_t[0, :].min()-0.5*Σ_t[0, 0, 1],

x_hat_t[0, :].max()+0.5*Σ_t[0, 0, 1], 100)
u_range = np.linspace(x_hat_t[1, :].min()-0.5*Σ_t[1, 1, 1],

x_hat_t[1, :].max()+0.5*Σ_t[1, 1, 1], 100)
h, u = np.meshgrid(h_range, u_range)

# Create a figure with subplots for each time step
fig, axs = plt.subplots(1, 3, figsize=(12, 7))

# Iterate through each time step
for i, t in enumerate(np.linspace(0, T-1, 3, dtype=int)):

# Create a multivariate normal distribution with x_hat and Σ at time step t
mu = x_hat_t[:, t]
cov = Σ_t[:, :, t]
mvn = multivariate_normal(mean=mu, cov=cov)

# Evaluate the multivariate normal PDF on the grid
pdf_values = mvn.pdf(np.dstack((h, u)))

# Create a contour plot for the PDF
con = axs[i].contour(h, u, pdf_values, cmap='viridis')
axs[i].clabel(con, inline=1, fontsize=10)
axs[i].set_title(f'Time Step {t+1}')
axs[i].set_xlabel(r'$h_{{{}}}$'.format(str(t+1)))
axs[i].set_ylabel(r'$u_{{{}}}$'.format(str(t+1)))

cov_latex = r'$\Sigma_{{{}}}= \begin{{bmatrix}} {:.2f} & {:.2f} \\ {:.2f} & {:.2f}
↪ \end{{bmatrix}}$'.format(

t+1, cov[0, 0], cov[0, 1], cov[1, 0], cov[1, 1]
)
axs[i].text(0.33, -0.15, cov_latex, transform=axs[i].transAxes)

plt.tight_layout()
plt.show()
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Note how the accumulation of evidence 𝑦𝑡 affects the shape of the confidence ellipsoid as sample size 𝑡 grows.
Now let’s use our code to set the hidden state 𝑥0 to a particular vector in order to watch how a firm learns starting from
some 𝑥0 we are interested in.
For example, let’s say ℎ0 = 0 and 𝑢0 = 4.
Here is one way to do this.

# For example, we might want h_0 = 0 and u_0 = 4
mu_0 = np.array([0.0, 4.0])

# Create a LinearStateSpace object with Sigma_0 as a matrix of zeros
ss_example = LinearStateSpace(A, C, G, np.sqrt(R), mu_0=mu_0,

# This line forces exact h_0=0 and u_0=4
Sigma_0=np.zeros((2, 2))

)

T = 100
x, y = ss_example.simulate(T)
y = y.flatten()

# Now h_0=0 and u_0=4
h_0, u_0 = x[0, 0], x[1, 0]
print('h_0 =', h_0)
print('u_0 =', u_0)

h_0 = 0.0
u_0 = 4.0

Another way to accomplish the same goal is to use the following code.
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# If we want to set the initial
# h_0 = hhat_0 = 0 and u_0 = uhhat_0 = 4.0:
worker = create_worker(hhat_0=0.0, uhat_0=4.0)

ss_example = LinearStateSpace(A, C, G, np.sqrt(R),
# This line takes h_0=hhat_0 and u_0=uhhat_0
mu_0=worker.xhat_0,
# This line forces exact h_0=hhat_0 and u_0=uhhat_0
Sigma_0=np.zeros((2, 2))

)

T = 100
x, y = ss_example.simulate(T)
y = y.flatten()

# Now h_0 and u_0 will be exactly hhat_0
h_0, u_0 = x[0, 0], x[1, 0]
print('h_0 =', h_0)
print('u_0 =', u_0)

h_0 = 0.0
u_0 = 4.0

For this worker, let’s generate a plot like the one above.

# First we compute the Kalman filter with initial xhat_0 and Σ_0
kalman = Kalman(ss, xhat_0, Σ_0)
Σ_t = []
y_hat_t = np.zeros(T-1)
u_hat_t = np.zeros(T-1)

# Then we iteratively update the Kalman filter class using
# observation y based on the linear state model above:
for t in range(1, T):

kalman.update(y[t])
x_hat, Σ = kalman.x_hat, kalman.Sigma
Σ_t.append(Σ)
y_hat_t[t-1] = worker.G @ x_hat
u_hat_t[t-1] = x_hat[1]

# Generate plots for y_hat_t and u_hat_t
fig, ax = plt.subplots(1, 2)

ax[0].plot(y_hat_t, label=r'$E[y_t| y^{t-1}]$')
ax[0].set_xlabel('Time')
ax[0].set_ylabel(r'$E[y_t]$')
ax[0].set_title(r'$E[y_t]$ over time')
ax[0].legend()

ax[1].plot(u_hat_t, label=r'$E[u_t|y^{t-1}]$')
ax[1].axhline(y=u_0, color='grey',

linestyle='dashed', label=fr'$u_0={u_0:.2f}$')
ax[1].set_xlabel('Time')
ax[1].set_ylabel(r'$E[u_t|y^{t-1}]$')
ax[1].set_title('Inferred work ethic over time')

(continues on next page)
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(continued from previous page)

ax[1].legend()

fig.tight_layout()
plt.show()

/tmp/ipykernel_6165/1462412779.py:13: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
y_hat_t[t-1] = worker.G @ x_hat

/tmp/ipykernel_6165/1462412779.py:14: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
u_hat_t[t-1] = x_hat[1]

More generally, we can change some or all of the parameters defining a worker in our create_worker namedtuple.
Here is an example.

# We can set these parameters when creating a worker -- just like classes!
hard_working_worker = create_worker(α=.4, β=.8,

hhat_0=7.0, uhat_0=100, σ_h=2.5, σ_u=3.2)

print(hard_working_worker)

WorkerModel(A=array([[0.4, 0.8],
[0. , 1. ]]), C=array([[0.2],
[0. ]]), G=array([1., 1.]), R=0.5, xhat_0=array([[ 7.],
[100.]]), Σ_0=array([[2.5, 0. ],
[0. , 3.2]]))

We can also simulate the system for 𝑇 = 50 periods for different workers.
The difference between the inferred work ethics and true work ethics converges to 0 over time.
This shows that the filter is gradually teaching the worker and firm about the worker’s effort.
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num_workers = 3
T = 50
fig, ax = plt.subplots(figsize=(7, 7))

for i in range(num_workers):
worker = create_worker(uhat_0=4+2*i)
simulate_workers(worker, T, ax)

ax.set_ylim(ymin=-2, ymax=2)
plt.show()

/tmp/ipykernel_6165/2747793518.py:30: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
y_hat_t[i] = worker.G @ x_hat

/tmp/ipykernel_6165/2747793518.py:31: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
u_hat_t[i] = x_hat[1]
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# We can also generate plots of u_t:

T = 50
fig, ax = plt.subplots(figsize=(7, 7))

uhat_0s = [2, -2, 1]
αs = [0.2, 0.3, 0.5]
βs = [0.1, 0.9, 0.3]

for i, (uhat_0, α, β) in enumerate(zip(uhat_0s, αs, βs)):
worker = create_worker(uhat_0=uhat_0, α=α, β=β)
simulate_workers(worker, T, ax,

# By setting diff=False, it will give u_t
diff=False, name=r'$u_{{{}, t}}$'.format(i))

ax.axhline(y=u_0, xmin=0, xmax=0, color='grey',

(continues on next page)
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(continued from previous page)

linestyle='dashed', label=r'$u_{i, 0}$')
ax.legend(bbox_to_anchor=(1, 0.5))
plt.show()

/tmp/ipykernel_6165/2747793518.py:30: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
y_hat_t[i] = worker.G @ x_hat

/tmp/ipykernel_6165/2747793518.py:31: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
u_hat_t[i] = x_hat[1]

# We can also use exact u_0=1 and h_0=2 for all workers

(continues on next page)
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(continued from previous page)

T = 50
fig, ax = plt.subplots(figsize=(7, 7))

# These two lines set u_0=1 and h_0=2 for all workers
mu_0 = np.array([[1],

[2]])
Sigma_0 = np.zeros((2,2))

uhat_0s = [2, -2, 1]
αs = [0.2, 0.3, 0.5]
βs = [0.1, 0.9, 0.3]

for i, (uhat_0, α, β) in enumerate(zip(uhat_0s, αs, βs)):
worker = create_worker(uhat_0=uhat_0, α=α, β=β)
simulate_workers(worker, T, ax, mu_0=mu_0, Sigma_0=Sigma_0,

diff=False, name=r'$u_{{{}, t}}$'.format(i))

# This controls the boundary of plots
ax.set_ylim(ymin=-3, ymax=3)
ax.axhline(y=u_0, xmin=0, xmax=0, color='grey',

linestyle='dashed', label=r'$u_{i, 0}$')
ax.legend(bbox_to_anchor=(1, 0.5))
plt.show()

/tmp/ipykernel_6165/2747793518.py:30: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
y_hat_t[i] = worker.G @ x_hat

/tmp/ipykernel_6165/2747793518.py:31: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
u_hat_t[i] = x_hat[1]
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# We can generate a plot for only one of the workers:

T = 50
fig, ax = plt.subplots(figsize=(7, 7))

mu_0_1 = np.array([[1],
[100]])

mu_0_2 = np.array([[1],
[30]])

Sigma_0 = np.zeros((2,2))

uhat_0s = 100
αs = 0.5
βs = 0.3

worker = create_worker(uhat_0=uhat_0, α=α, β=β)

(continues on next page)
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(continued from previous page)

simulate_workers(worker, T, ax, mu_0=mu_0_1, Sigma_0=Sigma_0,
diff=False, name=r'Hard-working worker')

simulate_workers(worker, T, ax, mu_0=mu_0_2, Sigma_0=Sigma_0,
diff=False,
title='A hard-working worker and a less hard-working worker',
name=r'Normal worker')

ax.axhline(y=u_0, xmin=0, xmax=0, color='grey',
linestyle='dashed', label=r'$u_{i, 0}$')

ax.legend(bbox_to_anchor=(1, 0.5))
plt.show()

/tmp/ipykernel_6165/2747793518.py:30: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
y_hat_t[i] = worker.G @ x_hat

/tmp/ipykernel_6165/2747793518.py:31: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
u_hat_t[i] = x_hat[1]
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2.6 Future Extensions

We can do lots of enlightening experiments by creating new types of workers and letting the firm learn about their hidden
(to the firm) states by observing just their output histories.
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CHAPTER

THREE

REVERSE ENGINEERING A LA MUTH

Contents

• Reverse Engineering a la Muth
– Friedman (1956) and Muth (1960)

– A Process for Which Adaptive Expectations are Optimal

– Some Useful State-Space Math

– Estimates of Unobservables

– Relationship of Unobservables to Observables

– MA and AR Representations

In addition to what’s in Anaconda, this lecture uses the quantecon library.

!pip install --upgrade quantecon

We’ll also need the following imports:

import matplotlib.pyplot as plt
import numpy as np

from quantecon import Kalman
from quantecon import LinearStateSpace
np.set_printoptions(linewidth=120, precision=4, suppress=True)

This lecture uses the Kalman filter to reformulate John F. Muth’s first paper [Muth, 1960] about rational expectations.
Muth used classical prediction methods to reverse engineer a stochastic process that renders optimal Milton Friedman’s
[Friedman, 1956] “adaptive expectations” scheme.

41



Dynamic Linear Economies

3.1 Friedman (1956) and Muth (1960)

Milton Friedman [Friedman, 1956] (1956) posited that consumer’s forecast their future disposable income with the adap-
tive expectations scheme

𝑦∗
𝑡+𝑖,𝑡 = 𝐾

∞
∑
𝑗=0

(1 − 𝐾)𝑗𝑦𝑡−𝑗 (3.1)

where 𝐾 ∈ (0, 1) and 𝑦∗
𝑡+𝑖,𝑡 is a forecast of future 𝑦 over horizon 𝑖.

Milton Friedman justified the exponential smoothing forecasting scheme (3.1) informally, noting that it seemed a plau-
sible way to use past income to forecast future income.
In his first paper about rational expectations, John F.Muth [Muth, 1960] reverse-engineered a univariate stochastic process
{𝑦𝑡}∞

𝑡=−∞ for which Milton Friedman’s adaptive expectations scheme gives linear least forecasts of 𝑦𝑡+𝑗 for any horizon
𝑖.
Muth sought a setting and a sense in which Friedman’s forecasting scheme is optimal.
That is, Muth asked for what optimal forecasting question is Milton Friedman’s adaptive expectation scheme the answer.
Muth (1960) used classical prediction methods based on lag-operators and 𝑧-transforms to find the answer to his question.
Please see lectures Classical Control with Linear Algebra and Classical Filtering and Prediction with Linear Algebra for
an introduction to the classical tools that Muth used.
Rather than using those classical tools, in this lecture we apply the Kalman filter to express the heart of Muth’s analysis
concisely.
The lecture First Look at Kalman Filter describes the Kalman filter.
We’ll use limiting versions of the Kalman filter corresponding to what are called stationary values in that lecture.

3.2 A Process for Which Adaptive Expectations are Optimal

Suppose that an observable 𝑦𝑡 is the sum of an unobserved random walk 𝑥𝑡 and an IID shock 𝜖2,𝑡:

𝑥𝑡+1 = 𝑥𝑡 + 𝜎𝑥𝜖1,𝑡+1
𝑦𝑡 = 𝑥𝑡 + 𝜎𝑦𝜖2,𝑡

(3.2)

where

[𝜖1,𝑡+1
𝜖2,𝑡

] ∼ 𝒩(0, 𝐼)

is an IID process.

Note: A property of the state-space representation (3.2) is that in general neither 𝜖1,𝑡 nor 𝜖2,𝑡 is in the space spanned by
square-summable linear combinations of 𝑦𝑡, 𝑦𝑡−1, ….

In general [𝜖1,𝑡
𝜖2𝑡

] has more information about future 𝑦𝑡+𝑗’s than is contained in 𝑦𝑡, 𝑦𝑡−1, ….

We can use the asymptotic or stationary values of the Kalman gain and the one-step-ahead conditional state covariance
matrix to compute a time-invariant innovations representation

̂𝑥𝑡+1 = ̂𝑥𝑡 + 𝐾𝑎𝑡
𝑦𝑡 = ̂𝑥𝑡 + 𝑎𝑡

(3.3)
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where ̂𝑥𝑡 = 𝐸[𝑥𝑡|𝑦𝑡−1, 𝑦𝑡−2, …] and 𝑎𝑡 = 𝑦𝑡 − 𝐸[𝑦𝑡|𝑦𝑡−1, 𝑦𝑡−2, …].

Note: A key property about an innovations representation is that 𝑎𝑡 is in the space spanned by square summable linear
combinations of 𝑦𝑡, 𝑦𝑡−1, ….

For more ramifications of this property, see the lectures Shock Non-Invertibility and Recursive Models of Dynamic Linear
Economies.
Later we’ll stack these state-space systems (3.2) and (3.3) to display some classic findings of Muth.
But first, let’s create an instance of the state-space system (3.2) then apply the quantecon Kalman class, then uses it to
construct the associated “innovations representation”

# Make some parameter choices
# sigx/sigy are state noise std err and measurement noise std err
μ_0, σ_x, σ_y = 10, 1, 5

# Create a LinearStateSpace object
A, C, G, H = 1, σ_x, 1, σ_y
ss = LinearStateSpace(A, C, G, H, mu_0=μ_0)

# Set prior and initialize the Kalman type
x_hat_0, Σ_0 = 10, 1
kmuth = Kalman(ss, x_hat_0, Σ_0)

# Computes stationary values which we need for the innovation
# representation
S1, K1 = kmuth.stationary_values()

# Extract scalars from nested arrays
S1, K1 = S1.item(), K1.item()

# Form innovation representation state-space
Ak, Ck, Gk, Hk = A, K1, G, 1

ssk = LinearStateSpace(Ak, Ck, Gk, Hk, mu_0=x_hat_0)

3.3 Some Useful State-Space Math

Now we want to map the time-invariant innovations representation (3.3) and the original state-space system (3.2) into a
convenient form for deducing the impulse responses from the original shocks to the 𝑥𝑡 and ̂𝑥𝑡.
Putting both of these representations into a single state-space system is yet another application of the insight that “finding
the state is an art”.
We’ll define a state vector and appropriate state-space matrices that allow us to represent both systems in one fell swoop.
Note that

𝑎𝑡 = 𝑥𝑡 + 𝜎𝑦𝜖2,𝑡 − ̂𝑥𝑡

so that

̂𝑥𝑡+1 = ̂𝑥𝑡 + 𝐾(𝑥𝑡 + 𝜎𝑦𝜖2,𝑡 − ̂𝑥𝑡)
= (1 − 𝐾) ̂𝑥𝑡 + 𝐾𝑥𝑡 + 𝐾𝜎𝑦𝜖2,𝑡
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The stacked system

⎡⎢
⎣

𝑥𝑡+1
̂𝑥𝑡+1

𝜖2,𝑡+1

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
𝐾 (1 − 𝐾) 𝐾𝜎𝑦
0 0 0

⎤⎥
⎦

⎡⎢
⎣

𝑥𝑡
̂𝑥𝑡

𝜖2,𝑡

⎤⎥
⎦

+ ⎡⎢
⎣

𝜎𝑥 0
0 0
0 1

⎤⎥
⎦

[𝜖1,𝑡+1
𝜖2,𝑡+1

]

[𝑦𝑡
𝑎𝑡

] = [1 0 𝜎𝑦
1 −1 𝜎𝑦

] ⎡⎢
⎣

𝑥𝑡
̂𝑥𝑡

𝜖2,𝑡

⎤⎥
⎦

is a state-space system that tells us how the shocks [𝜖1,𝑡+1
𝜖2,𝑡+1

] affect states ̂𝑥𝑡+1, 𝑥𝑡, the observable 𝑦𝑡, and the innovation
𝑎𝑡.
With this tool at our disposal, let’s form the composite system and simulate it

# Create grand state-space for y_t, a_t as observed vars -- Use
# stacking trick above
Af = np.array([[ 1, 0, 0],

[K1, 1 - K1, K1 * σ_y],
[ 0, 0, 0]])

Cf = np.array([[σ_x, 0],
[ 0, K1 * σ_y],
[ 0, 1]])

Gf = np.array([[1, 0, σ_y],
[1, -1, σ_y]])

μ_true, μ_prior = 10, 10
μ_f = np.array([μ_true, μ_prior, 0]).reshape(3, 1)

# Create the state-space
ssf = LinearStateSpace(Af, Cf, Gf, mu_0=μ_f)

# Draw observations of y from the state-space model
N = 50
xf, yf = ssf.simulate(N)

print(f"Kalman gain = {K1}")
print(f"Conditional variance = {S1}")

Kalman gain = 0.1809975124224177
Conditional variance = 5.524937810560442

Now that we have simulated our joint system, we have 𝑥𝑡, ̂𝑥𝑡, and 𝑦𝑡.
We can now investigate how these variables are related by plotting some key objects.

3.4 Estimates of Unobservables

First, let’s plot the hidden state 𝑥𝑡 and the filtered version ̂𝑥𝑡 that is linear-least squares projection of 𝑥𝑡 on the history
𝑦𝑡−1, 𝑦𝑡−2, …

fig, ax = plt.subplots()
ax.plot(xf[0, :], label="$x_t$")
ax.plot(xf[1, :], label="Filtered $x_t$")

(continues on next page)
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(continued from previous page)

ax.legend()
ax.set_xlabel("Time")
ax.set_title(r"$x$ vs $\hat{x}$")
plt.show()

Note how 𝑥𝑡 and ̂𝑥𝑡 differ.
For Friedman, ̂𝑥𝑡 and not 𝑥𝑡 is the consumer’s idea about her/his permanent income.

3.5 Relationship of Unobservables to Observables

Now let’s plot 𝑥𝑡 and 𝑦𝑡.
Recall that 𝑦𝑡 is just 𝑥𝑡 plus white noise

fig, ax = plt.subplots()
ax.plot(yf[0, :], label="y")
ax.plot(xf[0, :], label="x")
ax.legend()
ax.set_title(r"$x$ and $y$")
ax.set_xlabel("Time")
plt.show()
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We see above that 𝑦 seems to look like white noise around the values of 𝑥.

3.5.1 Innovations

Recall that we wrote down the innovation representation that depended on 𝑎𝑡. We now plot the innovations {𝑎𝑡}:

fig, ax = plt.subplots()
ax.plot(yf[1, :], label="a")
ax.legend()
ax.set_title(r"Innovation $a_t$")
ax.set_xlabel("Time")
plt.show()
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3.6 MA and AR Representations

Now we shall extract from the Kalman instance kmuth coefficients of
• a fundamental moving average representation that represents 𝑦𝑡 as a one-sided moving sum of current and past 𝑎𝑡s
that are square summable linear combinations of 𝑦𝑡, 𝑦𝑡−1, ….

• a univariate autoregression representation that depicts the coefficients in a linear least square projection of 𝑦𝑡 on the
semi-infinite history 𝑦𝑡−1, 𝑦𝑡−2, ….

Then we’ll plot each of them

# Kalman Methods for MA and VAR
coefs_ma = kmuth.stationary_coefficients(5, "ma")
coefs_var = kmuth.stationary_coefficients(5, "var")

# Coefficients come in a list of arrays, but we
# want to plot them and so need to stack into an array
coefs_ma_array = np.vstack(coefs_ma)
coefs_var_array = np.vstack(coefs_var)

fig, ax = plt.subplots(2)
ax[0].plot(coefs_ma_array, label="MA")
ax[0].legend()
ax[1].plot(coefs_var_array, label="VAR")

(continues on next page)
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(continued from previous page)

ax[1].legend()

plt.show()

The moving average coefficients in the top panel show tell-tale signs of 𝑦𝑡 being a process whose first difference is a
first-order autoregression.
The autoregressive coefficients decline geometrically with decay rate (1 − 𝐾).
These are exactly the target outcomes that Muth (1960) aimed to reverse engineer

print(f'decay parameter 1 - K1 = {1 - K1}')

decay parameter 1 - K1 = 0.8190024875775823
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CHAPTER

FOUR

LQ CONTROL: FOUNDATIONS

Contents

• LQ Control: Foundations

– Overview

– Introduction

– Optimality – Finite Horizon

– Implementation

– Extensions and Comments

– Further Applications

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

4.1 Overview

Linear quadratic (LQ) control refers to a class of dynamic optimization problems that have found applications in almost
every scientific field.
This lecture provides an introduction to LQ control and its economic applications.
As we will see, LQ systems have a simple structure that makes them an excellent workhorse for a wide variety of economic
problems.
Moreover, while the linear-quadratic structure is restrictive, it is in fact far more flexible than it may appear initially.
These themes appear repeatedly below.
Mathematically, LQ control problems are closely related to the Kalman filter

• Recursive formulations of linear-quadratic control problems and Kalman filtering problems both involve matrix
Riccati equations.

• Classical formulations of linear control and linear filtering problems make use of similar matrix decompositions
(see for example this lecture and this lecture).

In reading what follows, it will be useful to have some familiarity with
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• matrix manipulations
• vectors of random variables
• dynamic programming and the Bellman equation (see for example this lecture and this lecture)

For additional reading on LQ control, see, for example,
• [Ljungqvist and Sargent, 2018], chapter 5
• [Hansen and Sargent, 2008], chapter 4
• [Hernandez-Lerma and Lasserre, 1996], section 3.5

In order to focus on computation, we leave longer proofs to these sources (while trying to provide as much intuition as
possible).
Let’s start with some imports:

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import numpy as np
from quantecon import LQ

4.2 Introduction

The “linear” part of LQ is a linear law of motion for the state, while the “quadratic” part refers to preferences.
Let’s begin with the former, move on to the latter, and then put them together into an optimization problem.

4.2.1 The Law of Motion

Let 𝑥𝑡 be a vector describing the state of some economic system.
Suppose that 𝑥𝑡 follows a linear law of motion given by

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1, 𝑡 = 0, 1, 2, … (4.1)

Here
• 𝑢𝑡 is a “control” vector, incorporating choices available to a decision-maker confronting the current state 𝑥𝑡

• {𝑤𝑡} is an uncorrelated zero mean shock process satisfying 𝔼𝑤𝑡𝑤′
𝑡 = 𝐼 , where the right-hand side is the identity

matrix
Regarding the dimensions

• 𝑥𝑡 is 𝑛 × 1, 𝐴 is 𝑛 × 𝑛
• 𝑢𝑡 is 𝑘 × 1, 𝐵 is 𝑛 × 𝑘
• 𝑤𝑡 is 𝑗 × 1, 𝐶 is 𝑛 × 𝑗
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Example 1

Consider a household budget constraint given by

𝑎𝑡+1 + 𝑐𝑡 = (1 + 𝑟)𝑎𝑡 + 𝑦𝑡

Here 𝑎𝑡 is assets, 𝑟 is a fixed interest rate, 𝑐𝑡 is current consumption, and 𝑦𝑡 is current non-financial income.
If we suppose that {𝑦𝑡} is serially uncorrelated and 𝑁(0, 𝜎2), then, taking {𝑤𝑡} to be standard normal, we can write the
system as

𝑎𝑡+1 = (1 + 𝑟)𝑎𝑡 − 𝑐𝑡 + 𝜎𝑤𝑡+1

This is clearly a special case of (4.1), with assets being the state and consumption being the control.

Example 2

One unrealistic feature of the previous model is that non-financial income has a zero mean and is often negative.
This can easily be overcome by adding a sufficiently large mean.
Hence in this example, we take 𝑦𝑡 = 𝜎𝑤𝑡+1 + 𝜇 for some positive real number 𝜇.
Another alteration that’s useful to introduce (we’ll see why soon) is to change the control variable from consumption to
the deviation of consumption from some “ideal” quantity ̄𝑐.
(Most parameterizations will be such that ̄𝑐 is large relative to the amount of consumption that is attainable in each period,
and hence the household wants to increase consumption.)
For this reason, we now take our control to be 𝑢𝑡 ∶= 𝑐𝑡 − ̄𝑐.
In terms of these variables, the budget constraint 𝑎𝑡+1 = (1 + 𝑟)𝑎𝑡 − 𝑐𝑡 + 𝑦𝑡 becomes

𝑎𝑡+1 = (1 + 𝑟)𝑎𝑡 − 𝑢𝑡 − ̄𝑐 + 𝜎𝑤𝑡+1 + 𝜇 (4.2)

How can we write this new system in the form of equation (4.1)?
If, as in the previous example, we take 𝑎𝑡 as the state, then we run into a problem: the law of motion contains some
constant terms on the right-hand side.
This means that we are dealing with an affine function, not a linear one (recall this discussion).
Fortunately, we can easily circumvent this problem by adding an extra state variable.
In particular, if we write

( 𝑎𝑡+1
1 ) = ( 1 + 𝑟 − ̄𝑐 + 𝜇

0 1 ) ( 𝑎𝑡
1 ) + ( −1

0 ) 𝑢𝑡 + ( 𝜎
0 ) 𝑤𝑡+1 (4.3)

then the first row is equivalent to (4.2).
Moreover, the model is now linear and can be written in the form of (4.1) by setting

𝑥𝑡 ∶= ( 𝑎𝑡
1 ) , 𝐴 ∶= ( 1 + 𝑟 − ̄𝑐 + 𝜇

0 1 ) , 𝐵 ∶= ( −1
0 ) , 𝐶 ∶= ( 𝜎

0 ) (4.4)

In effect, we’ve bought ourselves linearity by adding another state.
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4.2.2 Preferences

In the LQ model, the aim is to minimize flow of losses, where time-𝑡 loss is given by the quadratic expression

𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 (4.5)

Here
• 𝑅 is assumed to be 𝑛 × 𝑛, symmetric and nonnegative definite.
• 𝑄 is assumed to be 𝑘 × 𝑘, symmetric and positive definite.

Note: In fact, for many economic problems, the definiteness conditions on 𝑅 and 𝑄 can be relaxed. It is sufficient that
certain submatrices of 𝑅 and 𝑄 be nonnegative definite. See [Hansen and Sargent, 2008] for details.

Example 1

A very simple example that satisfies these assumptions is to take 𝑅 and 𝑄 to be identity matrices so that current loss is

𝑥′
𝑡𝐼𝑥𝑡 + 𝑢′

𝑡𝐼𝑢𝑡 = ‖𝑥𝑡‖2 + ‖𝑢𝑡‖2

Thus, for both the state and the control, loss is measured as squared distance from the origin.
(In fact, the general case (4.5) can also be understood in this way, but with 𝑅 and 𝑄 identifying other – non-Euclidean –
notions of “distance” from the zero vector.)
Intuitively, we can often think of the state 𝑥𝑡 as representing deviation from a target, such as

• deviation of inflation from some target level
• deviation of a firm’s capital stock from some desired quantity

The aim is to put the state close to the target, while using controls parsimoniously.

Example 2

In the household problem studied above, setting 𝑅 = 0 and 𝑄 = 1 yields preferences

𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 = 𝑢2
𝑡 = (𝑐𝑡 − ̄𝑐)2

Under this specification, the household’s current loss is the squared deviation of consumption from the ideal level ̄𝑐.

4.3 Optimality – Finite Horizon

Let’s now be precise about the optimization problem we wish to consider, and look at how to solve it.
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4.3.1 The Objective

We will begin with the finite horizon case, with terminal time 𝑇 ∈ ℕ.
In this case, the aim is to choose a sequence of controls {𝑢0, … , 𝑢𝑇 −1} to minimize the objective

𝔼 {
𝑇 −1
∑
𝑡=0

𝛽𝑡(𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡) + 𝛽𝑇 𝑥′
𝑇 𝑅𝑓𝑥𝑇 } (4.6)

subject to the law of motion (4.1) and initial state 𝑥0.
The new objects introduced here are 𝛽 and the matrix 𝑅𝑓 .
The scalar 𝛽 is the discount factor, while 𝑥′𝑅𝑓𝑥 gives terminal loss associated with state 𝑥.
Comments:

• We assume 𝑅𝑓 to be 𝑛 × 𝑛, symmetric and nonnegative definite.
• We allow 𝛽 = 1, and hence include the undiscounted case.
• 𝑥0 may itself be random, in which case we require it to be independent of the shock sequence 𝑤1, … , 𝑤𝑇 .

4.3.2 Information

There’s one constraint we’ve neglected to mention so far, which is that the decision-maker who solves this LQ problem
knows only the present and the past, not the future.
To clarify this point, consider the sequence of controls {𝑢0, … , 𝑢𝑇 −1}.
When choosing these controls, the decision-maker is permitted to take into account the effects of the shocks {𝑤1, … , 𝑤𝑇 }
on the system.
However, it is typically assumed — and will be assumed here — that the time-𝑡 control 𝑢𝑡 can be made with knowledge
of past and present shocks only.
The fancy measure-theoretic way of saying this is that 𝑢𝑡 must be measurable with respect to the 𝜎-algebra generated by
𝑥0, 𝑤1, 𝑤2, … , 𝑤𝑡.
This is in fact equivalent to stating that 𝑢𝑡 can be written in the form 𝑢𝑡 = 𝑔𝑡(𝑥0, 𝑤1, 𝑤2, … , 𝑤𝑡) for some Borel mea-
surable function 𝑔𝑡.
(Just about every function that’s useful for applications is Borel measurable, so, for the purposes of intuition, you can read
that last phrase as “for some function 𝑔𝑡”)
Now note that 𝑥𝑡 will ultimately depend on the realizations of 𝑥0, 𝑤1, 𝑤2, … , 𝑤𝑡.
In fact, it turns out that 𝑥𝑡 summarizes all the information about these historical shocks that the decision-maker needs to
set controls optimally.
More precisely, it can be shown that any optimal control 𝑢𝑡 can always be written as a function of the current state alone.
Hence in what follows we restrict attention to control policies (i.e., functions) of the form 𝑢𝑡 = 𝑔𝑡(𝑥𝑡).
Actually, the preceding discussion applies to all standard dynamic programming problems.
What’s special about the LQ case is that – as we shall soon see — the optimal 𝑢𝑡 turns out to be a linear function of 𝑥𝑡.
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4.3.3 Solution

To solve the finite horizon LQ problem we can use a dynamic programming strategy based on backward induction that is
conceptually similar to the approach adopted in this lecture.
For reasons that will soon become clear, we first introduce the notation 𝐽𝑇 (𝑥) = 𝑥′𝑅𝑓𝑥.
Now consider the problem of the decision-maker in the second to last period.
In particular, let the time be 𝑇 − 1, and suppose that the state is 𝑥𝑇 −1.
The decision-maker must trade-off current and (discounted) final losses, and hence solves

min
𝑢

{𝑥′
𝑇 −1𝑅𝑥𝑇 −1 + 𝑢′𝑄𝑢 + 𝛽 𝔼𝐽𝑇 (𝐴𝑥𝑇 −1 + 𝐵𝑢 + 𝐶𝑤𝑇 )}

At this stage, it is convenient to define the function

𝐽𝑇 −1(𝑥) = min
𝑢

{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 𝔼𝐽𝑇 (𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤𝑇 )} (4.7)

The function 𝐽𝑇 −1 will be called the 𝑇 −1 value function, and 𝐽𝑇 −1(𝑥) can be thought of as representing total “loss-to-go”
from state 𝑥 at time 𝑇 − 1 when the decision-maker behaves optimally.
Now let’s step back to 𝑇 − 2.
For a decision-maker at𝑇 −2, the value 𝐽𝑇 −1(𝑥) plays a role analogous to that played by the terminal loss 𝐽𝑇 (𝑥) = 𝑥′𝑅𝑓𝑥
for the decision-maker at 𝑇 − 1.
That is, 𝐽𝑇 −1(𝑥) summarizes the future loss associated with moving to state 𝑥.
The decision-maker chooses her control 𝑢 to trade off current loss against future loss, where

• the next period state is 𝑥𝑇 −1 = 𝐴𝑥𝑇 −2 + 𝐵𝑢 + 𝐶𝑤𝑇 −1, and hence depends on the choice of current control.
• the “cost” of landing in state 𝑥𝑇 −1 is 𝐽𝑇 −1(𝑥𝑇 −1).

Her problem is therefore

min
𝑢

{𝑥′
𝑇 −2𝑅𝑥𝑇 −2 + 𝑢′𝑄𝑢 + 𝛽 𝔼𝐽𝑇 −1(𝐴𝑥𝑇 −2 + 𝐵𝑢 + 𝐶𝑤𝑇 −1)}

Letting

𝐽𝑇 −2(𝑥) = min
𝑢

{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 𝔼𝐽𝑇 −1(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤𝑇 −1)}

the pattern for backward induction is now clear.
In particular, we define a sequence of value functions {𝐽0, … , 𝐽𝑇 } via

𝐽𝑡−1(𝑥) = min
𝑢

{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 𝔼𝐽𝑡(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤𝑡)} and 𝐽𝑇 (𝑥) = 𝑥′𝑅𝑓𝑥

The first equality is the Bellman equation from dynamic programming theory specialized to the finite horizon LQ problem.
Now that we have {𝐽0, … , 𝐽𝑇 }, we can obtain the optimal controls.
As a first step, let’s find out what the value functions look like.
It turns out that every 𝐽𝑡 has the form 𝐽𝑡(𝑥) = 𝑥′𝑃𝑡𝑥 + 𝑑𝑡 where 𝑃𝑡 is a 𝑛 × 𝑛 matrix and 𝑑𝑡 is a constant.
We can show this by induction, starting from 𝑃𝑇 ∶= 𝑅𝑓 and 𝑑𝑇 = 0.
Using this notation, (4.7) becomes

𝐽𝑇 −1(𝑥) = min
𝑢

{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 𝔼(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤𝑇 )′𝑃𝑇 (𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤𝑇 )} (4.8)

To obtain the minimizer, we can take the derivative of the r.h.s. with respect to 𝑢 and set it equal to zero.
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Applying the relevant rules of matrix calculus, this gives

𝑢 = −(𝑄 + 𝛽𝐵′𝑃𝑇 𝐵)−1𝛽𝐵′𝑃𝑇 𝐴𝑥 (4.9)

Plugging this back into (4.8) and rearranging yields

𝐽𝑇 −1(𝑥) = 𝑥′𝑃𝑇 −1𝑥 + 𝑑𝑇 −1

where

𝑃𝑇 −1 = 𝑅 − 𝛽2𝐴′𝑃𝑇 𝐵(𝑄 + 𝛽𝐵′𝑃𝑇 𝐵)−1𝐵′𝑃𝑇 𝐴 + 𝛽𝐴′𝑃𝑇 𝐴 (4.10)

and

𝑑𝑇 −1 ∶= 𝛽 trace(𝐶′𝑃𝑇 𝐶) (4.11)

(The algebra is a good exercise — we’ll leave it up to you.)
If we continue working backwards in this manner, it soon becomes clear that 𝐽𝑡(𝑥) = 𝑥′𝑃𝑡𝑥 + 𝑑𝑡 as claimed, where
{𝑃𝑡} and {𝑑𝑡} satisfy the recursions

𝑃𝑡−1 = 𝑅 − 𝛽2𝐴′𝑃𝑡𝐵(𝑄 + 𝛽𝐵′𝑃𝑡𝐵)−1𝐵′𝑃𝑡𝐴 + 𝛽𝐴′𝑃𝑡𝐴 with 𝑃𝑇 = 𝑅𝑓 (4.12)

and

𝑑𝑡−1 = 𝛽(𝑑𝑡 + trace(𝐶′𝑃𝑡𝐶)) with 𝑑𝑇 = 0 (4.13)

Recalling (4.9), the minimizers from these backward steps are

𝑢𝑡 = −𝐹𝑡𝑥𝑡 where 𝐹𝑡 ∶= (𝑄 + 𝛽𝐵′𝑃𝑡+1𝐵)−1𝛽𝐵′𝑃𝑡+1𝐴 (4.14)

These are the linear optimal control policies we discussed above.
In particular, the sequence of controls given by (4.14) and (4.1) solves our finite horizon LQ problem.
Rephrasing this more precisely, the sequence 𝑢0, … , 𝑢𝑇 −1 given by

𝑢𝑡 = −𝐹𝑡𝑥𝑡 with 𝑥𝑡+1 = (𝐴 − 𝐵𝐹𝑡)𝑥𝑡 + 𝐶𝑤𝑡+1 (4.15)

for 𝑡 = 0, … , 𝑇 − 1 attains the minimum of (4.6) subject to our constraints.

4.4 Implementation

We will use code from lqcontrol.py in QuantEcon.py to solve finite and infinite horizon linear quadratic control problems.
In the module, the various updating, simulation and fixed point methods are wrapped in a class called LQ, which includes

• Instance data:
– The required parameters 𝑄, 𝑅, 𝐴, 𝐵 and optional parameters 𝐶, 𝛽, 𝑇 , 𝑅𝑓 , 𝑁 specifying a given LQ model

∗ set 𝑇 and 𝑅𝑓 to None in the infinite horizon case
∗ set C = None (or zero) in the deterministic case

– the value function and policy data
∗ 𝑑𝑡, 𝑃𝑡, 𝐹𝑡 in the finite horizon case
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∗ 𝑑, 𝑃 , 𝐹 in the infinite horizon case
• Methods:

– update_values— shifts 𝑑𝑡, 𝑃𝑡, 𝐹𝑡 to their 𝑡 − 1 values via (4.12), (4.13) and (4.14)
– stationary_values— computes 𝑃 , 𝑑, 𝐹 in the infinite horizon case
– compute_sequence —- simulates the dynamics of 𝑥𝑡, 𝑢𝑡, 𝑤𝑡 given 𝑥0 and assuming standard normal
shocks

4.4.1 An Application

Early Keynesian models assumed that households have a constant marginal propensity to consume from current income.
Data contradicted the constancy of the marginal propensity to consume.
In response, Milton Friedman, Franco Modigliani and others built models based on a consumer’s preference for an in-
tertemporally smooth consumption stream.
(See, for example, [Friedman, 1956] or [Modigliani and Brumberg, 1954].)
One property of those models is that households purchase and sell financial assets to make consumption streams smoother
than income streams.
The household savings problem outlined above captures these ideas.
The optimization problem for the household is to choose a consumption sequence in order to minimize

𝔼 {
𝑇 −1
∑
𝑡=0

𝛽𝑡(𝑐𝑡 − ̄𝑐)2 + 𝛽𝑇 𝑞𝑎2
𝑇 } (4.16)

subject to the sequence of budget constraints 𝑎𝑡+1 = (1 + 𝑟)𝑎𝑡 − 𝑐𝑡 + 𝑦𝑡, 𝑡 ≥ 0.
Here 𝑞 is a large positive constant, the role of which is to induce the consumer to target zero debt at the end of her life.
(Without such a constraint, the optimal choice is to choose 𝑐𝑡 = ̄𝑐 in each period, letting assets adjust accordingly.)
As before we set 𝑦𝑡 = 𝜎𝑤𝑡+1 + 𝜇 and 𝑢𝑡 ∶= 𝑐𝑡 − ̄𝑐, after which the constraint can be written as in (4.2).
We saw how this constraint could be manipulated into the LQ formulation 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1 by setting
𝑥𝑡 = (𝑎𝑡 1)′ and using the definitions in (4.4).
To match with this state and control, the objective function (4.16) can be written in the form of (4.6) by choosing

𝑄 ∶= 1, 𝑅 ∶= ( 0 0
0 0 ) , and 𝑅𝑓 ∶= ( 𝑞 0

0 0 )

Now that the problem is expressed in LQ form, we can proceed to the solution by applying (4.12) and (4.14).
After generating shocks 𝑤1, … , 𝑤𝑇 , the dynamics for assets and consumption can be simulated via (4.15).
The following figure was computed using 𝑟 = 0.05, 𝛽 = 1/(1 + 𝑟), ̄𝑐 = 2, 𝜇 = 1, 𝜎 = 0.25, 𝑇 = 45 and 𝑞 = 106.
The shocks {𝑤𝑡} were taken to be IID and standard normal.

# Model parameters
r = 0.05
β = 1/(1 + r)
T = 45
c_bar = 2
σ = 0.25

(continues on next page)
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(continued from previous page)

μ = 1
q = 1e6

# Formulate as an LQ problem
Q = 1
R = np.zeros((2, 2))
Rf = np.zeros((2, 2))
Rf[0, 0] = q
A = [[1 + r, -c_bar + μ],

[0, 1]]
B = [[-1],

[ 0]]
C = [[σ],

[0]]

# Compute solutions and simulate
lq = LQ(Q, R, A, B, C, beta=β, T=T, Rf=Rf)
x0 = (0, 1)
xp, up, wp = lq.compute_sequence(x0)

# Convert back to assets, consumption and income
assets = xp[0, :] # a_t
c = up.flatten() + c_bar # c_t
income = σ * wp[0, 1:] + μ # y_t

# Plot results
n_rows = 2
fig, axes = plt.subplots(n_rows, 1, figsize=(12, 10))

plt.subplots_adjust(hspace=0.5)

bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

axes[0].plot(list(range(1, T+1)), income, 'g-', label="non-financial income",
**p_args)

axes[0].plot(list(range(T)), c, 'k-', label="consumption", **p_args)

axes[1].plot(list(range(1, T+1)), np.cumsum(income - μ), 'r-',
label="cumulative unanticipated income", **p_args)

axes[1].plot(list(range(T+1)), assets, 'b-', label="assets", **p_args)
axes[1].plot(list(range(T)), np.zeros(T), 'k-')

for ax in axes:
ax.grid()
ax.set_xlabel('Time')
ax.legend(ncol=2, **legend_args)

plt.show()
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The top panel shows the time path of consumption 𝑐𝑡 and income 𝑦𝑡 in the simulation.
As anticipated by the discussion on consumption smoothing, the time path of consumption is much smoother than that
for income.
(But note that consumption becomesmore irregular towards the end of life, when the zero final asset requirement impinges
more on consumption choices.)
The second panel in the figure shows that the time path of assets 𝑎𝑡 is closely correlated with cumulative unanticipated
income, where the latter is defined as

𝑧𝑡 ∶=
𝑡

∑
𝑗=0

𝜎𝑤𝑡

A key message is that unanticipated windfall gains are saved rather than consumed, while unanticipated negative shocks
are met by reducing assets.
(Again, this relationship breaks down towards the end of life due to the zero final asset requirement.)
These results are relatively robust to changes in parameters.
For example, let’s increase 𝛽 from 1/(1 + 𝑟) ≈ 0.952 to 0.96 while keeping other parameters fixed.
This consumer is slightly more patient than the last one, and hence puts relatively more weight on later consumption values.

60 Chapter 4. LQ Control: Foundations



Dynamic Linear Economies

# Compute solutions and simulate
lq = LQ(Q, R, A, B, C, beta=0.96, T=T, Rf=Rf)
x0 = (0, 1)
xp, up, wp = lq.compute_sequence(x0)

# Convert back to assets, consumption and income
assets = xp[0, :] # a_t
c = up.flatten() + c_bar # c_t
income = σ * wp[0, 1:] + μ # y_t

# Plot results
n_rows = 2
fig, axes = plt.subplots(n_rows, 1, figsize=(12, 10))

plt.subplots_adjust(hspace=0.5)

bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

axes[0].plot(list(range(1, T+1)), income, 'g-', label="non-financial income",
**p_args)

axes[0].plot(list(range(T)), c, 'k-', label="consumption", **p_args)

axes[1].plot(list(range(1, T+1)), np.cumsum(income - μ), 'r-',
label="cumulative unanticipated income", **p_args)

axes[1].plot(list(range(T+1)), assets, 'b-', label="assets", **p_args)
axes[1].plot(list(range(T)), np.zeros(T), 'k-')

for ax in axes:
ax.grid()
ax.set_xlabel('Time')
ax.legend(ncol=2, **legend_args)

plt.show()
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We now have a slowly rising consumption stream and a hump-shaped build-up of assets in the middle periods to fund
rising consumption.
However, the essential features are the same: consumption is smooth relative to income, and assets are strongly positively
correlated with cumulative unanticipated income.

4.5 Extensions and Comments

Let’s now consider a number of standard extensions to the LQ problem treated above.
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4.5.1 Time-Varying Parameters

In some settings, it can be desirable to allow 𝐴, 𝐵, 𝐶, 𝑅 and 𝑄 to depend on 𝑡.
For the sake of simplicity, we’ve chosen not to treat this extension in our implementation given below.
However, the loss of generality is not as large as you might first imagine.
In fact, we can tackle many models with time-varying parameters by suitable choice of state variables.
One illustration is given below.
For further examples and a more systematic treatment, see [Hansen and Sargent, 2013], section 2.4.

4.5.2 Adding a Cross-Product Term

In some LQ problems, preferences include a cross-product term 𝑢′
𝑡𝑁𝑥𝑡, so that the objective function becomes

𝔼 {
𝑇 −1
∑
𝑡=0

𝛽𝑡(𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝑢′
𝑡𝑁𝑥𝑡) + 𝛽𝑇 𝑥′

𝑇 𝑅𝑓𝑥𝑇 } (4.17)

Our results extend to this case in a straightforward way.
The sequence {𝑃𝑡} from (4.12) becomes

𝑃𝑡−1 = 𝑅 − (𝛽𝐵′𝑃𝑡𝐴 + 𝑁)′(𝑄 + 𝛽𝐵′𝑃𝑡𝐵)−1(𝛽𝐵′𝑃𝑡𝐴 + 𝑁) + 𝛽𝐴′𝑃𝑡𝐴 with 𝑃𝑇 = 𝑅𝑓 (4.18)

The policies in (4.14) are modified to

𝑢𝑡 = −𝐹𝑡𝑥𝑡 where 𝐹𝑡 ∶= (𝑄 + 𝛽𝐵′𝑃𝑡+1𝐵)−1(𝛽𝐵′𝑃𝑡+1𝐴 + 𝑁) (4.19)

The sequence {𝑑𝑡} is unchanged from (4.13).
We leave interested readers to confirm these results (the calculations are long but not overly difficult).

4.5.3 Infinite Horizon

Finally, we consider the infinite horizon case, with cross-product term, unchanged dynamics and objective function given
by

𝔼 {
∞

∑
𝑡=0

𝛽𝑡(𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝑢′
𝑡𝑁𝑥𝑡)} (4.20)

In the infinite horizon case, optimal policies can depend on time only if time itself is a component of the state vector 𝑥𝑡.
In other words, there exists a fixed matrix 𝐹 such that 𝑢𝑡 = −𝐹𝑥𝑡 for all 𝑡.
That decision rules are constant over time is intuitive — after all, the decision-maker faces the same infinite horizon at
every stage, with only the current state changing.
Not surprisingly, 𝑃 and 𝑑 are also constant.
The stationary matrix 𝑃 is the solution to the discrete-time algebraic Riccati equation.

𝑃 = 𝑅 − (𝛽𝐵′𝑃𝐴 + 𝑁)′(𝑄 + 𝛽𝐵′𝑃𝐵)−1(𝛽𝐵′𝑃𝐴 + 𝑁) + 𝛽𝐴′𝑃𝐴 (4.21)
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Equation (4.21) is also called the LQ Bellman equation, and the map that sends a given 𝑃 into the right-hand side of (4.21)
is called the LQ Bellman operator.
The stationary optimal policy for this model is

𝑢 = −𝐹𝑥 where 𝐹 = (𝑄 + 𝛽𝐵′𝑃𝐵)−1(𝛽𝐵′𝑃𝐴 + 𝑁) (4.22)

The sequence {𝑑𝑡} from (4.13) is replaced by the constant value

𝑑 ∶= trace(𝐶′𝑃𝐶) 𝛽
1 − 𝛽 (4.23)

The state evolves according to the time-homogeneous process 𝑥𝑡+1 = (𝐴 − 𝐵𝐹)𝑥𝑡 + 𝐶𝑤𝑡+1.
An example infinite horizon problem is treated below.

4.5.4 Certainty Equivalence

Linear quadratic control problems of the class discussed above have the property of certainty equivalence.
By this, we mean that the optimal policy 𝐹 is not affected by the parameters in 𝐶, which specify the shock process.
This can be confirmed by inspecting (4.22) or (4.19).
It follows that we can ignore uncertainty when solving for optimal behavior, and plug it back in when examining optimal
state dynamics.

4.6 Further Applications

4.6.1 Application 1: Age-Dependent Income Process

Previously we studied a permanent income model that generated consumption smoothing.
One unrealistic feature of that model is the assumption that the mean of the random income process does not depend on
the consumer’s age.
A more realistic income profile is one that rises in early working life, peaks towards the middle and maybe declines toward
the end of working life and falls more during retirement.
In this section, we will model this rise and fall as a symmetric inverted “U” using a polynomial in age.
As before, the consumer seeks to minimize

𝔼 {
𝑇 −1
∑
𝑡=0

𝛽𝑡(𝑐𝑡 − ̄𝑐)2 + 𝛽𝑇 𝑞𝑎2
𝑇 } (4.24)

subject to 𝑎𝑡+1 = (1 + 𝑟)𝑎𝑡 − 𝑐𝑡 + 𝑦𝑡, 𝑡 ≥ 0.
For income we now take 𝑦𝑡 = 𝑝(𝑡) + 𝜎𝑤𝑡+1 where 𝑝(𝑡) ∶= 𝑚0 + 𝑚1𝑡 + 𝑚2𝑡2.
(In the next section we employ some tricks to implement a more sophisticated model.)
The coefficients 𝑚0, 𝑚1, 𝑚2 are chosen such that 𝑝(0) = 0, 𝑝(𝑇 /2) = 𝜇, and 𝑝(𝑇 ) = 0.
You can confirm that the specification 𝑚0 = 0, 𝑚1 = 𝑇 𝜇/(𝑇 /2)2, 𝑚2 = −𝜇/(𝑇 /2)2 satisfies these constraints.
To put this into an LQ setting, consider the budget constraint, which becomes

𝑎𝑡+1 = (1 + 𝑟)𝑎𝑡 − 𝑢𝑡 − ̄𝑐 + 𝑚1𝑡 + 𝑚2𝑡2 + 𝜎𝑤𝑡+1 (4.25)
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The fact that 𝑎𝑡+1 is a linear function of (𝑎𝑡, 1, 𝑡, 𝑡2) suggests taking these four variables as the state vector 𝑥𝑡.
Once a good choice of state and control (recall 𝑢𝑡 = 𝑐𝑡 − ̄𝑐) has been made, the remaining specifications fall into place
relatively easily.
Thus, for the dynamics we set

𝑥𝑡 ∶=
⎛⎜⎜⎜
⎝

𝑎𝑡
1
𝑡
𝑡2

⎞⎟⎟⎟
⎠

, 𝐴 ∶=
⎛⎜⎜⎜
⎝

1 + 𝑟 − ̄𝑐 𝑚1 𝑚2
0 1 0 0
0 1 1 0
0 1 2 1

⎞⎟⎟⎟
⎠

, 𝐵 ∶=
⎛⎜⎜⎜
⎝

−1
0
0
0

⎞⎟⎟⎟
⎠

, 𝐶 ∶=
⎛⎜⎜⎜
⎝

𝜎
0
0
0

⎞⎟⎟⎟
⎠

(4.26)

If you expand the expression 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1 using this specification, you will find that assets follow (4.25)
as desired and that the other state variables also update appropriately.
To implement preference specification (4.24) we take

𝑄 ∶= 1, 𝑅 ∶=
⎛⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟
⎠

and 𝑅𝑓 ∶=
⎛⎜⎜⎜
⎝

𝑞 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟
⎠

(4.27)

The next figure shows a simulation of consumption and assets computed using the compute_sequence method of
lqcontrol.py with initial assets set to zero.
Once again, smooth consumption is a dominant feature of the sample paths.
The asset path exhibits dynamics consistent with standard life cycle theory.
Exercise 4.7.1 gives the full set of parameters used here and asks you to replicate the figure.

4.6.2 Application 2: A Permanent Income Model with Retirement

In the previous application, we generated income dynamics with an inverted U shape using polynomials and placed them
in an LQ framework.
It is arguably the case that this income process still contains unrealistic features.
A more common earning profile is where

1. income grows over working life, fluctuating around an increasing trend, with growth flattening off in later years
2. retirement follows, with lower but relatively stable (non-financial) income

Letting 𝐾 be the retirement date, we can express these income dynamics by

𝑦𝑡 = {𝑝(𝑡) + 𝜎𝑤𝑡+1 if 𝑡 ≤ 𝐾
𝑠 otherwise

(4.28)

Here
• 𝑝(𝑡) ∶= 𝑚1𝑡 + 𝑚2𝑡2 with the coefficients 𝑚1, 𝑚2 chosen such that 𝑝(𝐾) = 𝜇 and 𝑝(0) = 𝑝(2𝐾) = 0
• 𝑠 is retirement income

We suppose that preferences are unchanged and given by (4.16).
The budget constraint is also unchanged and given by 𝑎𝑡+1 = (1 + 𝑟)𝑎𝑡 − 𝑐𝑡 + 𝑦𝑡.
Our aim is to solve this problem and simulate paths using the LQ techniques described in this lecture.
In fact, this is a nontrivial problem, as the kink in the dynamics (4.28) at 𝐾 makes it very difficult to express the law of
motion as a fixed-coefficient linear system.
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However, we can still use our LQ methods here by suitably linking two-component LQ problems.
These two LQ problems describe the consumer’s behavior during her working life (lq_working) and retirement
(lq_retired).
(This is possible because, in the two separate periods of life, the respective income processes [polynomial trend and
constant] each fit the LQ framework.)
The basic idea is that although the whole problem is not a single time-invariant LQ problem, it is still a dynamic program-
ming problem, and hence we can use appropriate Bellman equations at every stage.
Based on this logic, we can

1. solve lq_retired by the usual backward induction procedure, iterating back to the start of retirement.
2. take the start-of-retirement value function generated by this process, and use it as the terminal condition𝑅𝑓 to feed

into the lq_working specification.
3. solve lq_working by backward induction from this choice of 𝑅𝑓 , iterating back to the start of working life.

This process gives the entire life-time sequence of value functions and optimal policies.
The next figure shows one simulation based on this procedure.
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The full set of parameters used in the simulation is discussed in Exercise 4.7.2, where you are asked to replicate the figure.
Once again, the dominant feature observable in the simulation is consumption smoothing.
The asset path fits well with standard life cycle theory, with dissaving early in life followed by later saving.
Assets peak at retirement and subsequently decline.

4.6.3 Application 3: Monopoly with Adjustment Costs

Consider a monopolist facing stochastic inverse demand function

𝑝𝑡 = 𝑎0 − 𝑎1𝑞𝑡 + 𝑑𝑡

Here 𝑞𝑡 is output, and the demand shock 𝑑𝑡 follows

𝑑𝑡+1 = 𝜌𝑑𝑡 + 𝜎𝑤𝑡+1

where {𝑤𝑡} is IID and standard normal.
The monopolist maximizes the expected discounted sum of present and future profits

𝔼 {
∞

∑
𝑡=0

𝛽𝑡𝜋𝑡} where 𝜋𝑡 ∶= 𝑝𝑡𝑞𝑡 − 𝑐𝑞𝑡 − 𝛾(𝑞𝑡+1 − 𝑞𝑡)2 (4.29)

Here
• 𝛾(𝑞𝑡+1 − 𝑞𝑡)2 represents adjustment costs
• 𝑐 is average cost of production

This can be formulated as an LQ problem and then solved and simulated, but first let’s study the problem and try to get
some intuition.
One way to start thinking about the problem is to consider what would happen if 𝛾 = 0.
Without adjustment costs there is no intertemporal trade-off, so the monopolist will choose output to maximize current
profit in each period.
It’s not difficult to show that profit-maximizing output is

̄𝑞𝑡 ∶= 𝑎0 − 𝑐 + 𝑑𝑡
2𝑎1

In light of this discussion, what we might expect for general 𝛾 is that
• if 𝛾 is close to zero, then 𝑞𝑡 will track the time path of ̄𝑞𝑡 relatively closely.
• if 𝛾 is larger, then 𝑞𝑡 will be smoother than ̄𝑞𝑡, as the monopolist seeks to avoid adjustment costs.

This intuition turns out to be correct.
The following figures show simulations produced by solving the corresponding LQ problem.
The only difference in parameters across the figures is the size of 𝛾
To produce these figures we converted the monopolist problem into an LQ problem.
The key to this conversion is to choose the right state — which can be a bit of an art.
Here we take 𝑥𝑡 = ( ̄𝑞𝑡 𝑞𝑡 1)′, while the control is chosen as 𝑢𝑡 = 𝑞𝑡+1 − 𝑞𝑡.
We also manipulated the profit function slightly.

68 Chapter 4. LQ Control: Foundations



Dynamic Linear Economies

4.6. Further Applications 69



Dynamic Linear Economies

70 Chapter 4. LQ Control: Foundations



Dynamic Linear Economies

4.6. Further Applications 71



Dynamic Linear Economies

In (4.29), current profits are 𝜋𝑡 ∶= 𝑝𝑡𝑞𝑡 − 𝑐𝑞𝑡 − 𝛾(𝑞𝑡+1 − 𝑞𝑡)2.
Let’s now replace 𝜋𝑡 in (4.29) with ̂𝜋𝑡 ∶= 𝜋𝑡 − 𝑎1 ̄𝑞2

𝑡 .
This makes no difference to the solution, since 𝑎1 ̄𝑞2

𝑡 does not depend on the controls.
(In fact, we are just adding a constant term to (4.29), and optimizers are not affected by constant terms.)
The reason for making this substitution is that, as you will be able to verify, ̂𝜋𝑡 reduces to the simple quadratic

̂𝜋𝑡 = −𝑎1(𝑞𝑡 − ̄𝑞𝑡)2 − 𝛾𝑢2
𝑡

After negation to convert to a minimization problem, the objective becomes

min𝔼
∞

∑
𝑡=0

𝛽𝑡 {𝑎1(𝑞𝑡 − ̄𝑞𝑡)2 + 𝛾𝑢2
𝑡 } (4.30)

It’s now relatively straightforward to find 𝑅 and 𝑄 such that (4.30) can be written as (4.20).
Furthermore, the matrices 𝐴, 𝐵 and 𝐶 from (4.1) can be found by writing down the dynamics of each element of the
state.
Exercise 4.7.3 asks you to complete this process, and reproduce the preceding figures.

4.7 Exercises

Exercise 4.7.1
Replicate the figure with polynomial income shown above.
The parameters are 𝑟 = 0.05, 𝛽 = 1/(1 + 𝑟), ̄𝑐 = 1.5, 𝜇 = 2, 𝜎 = 0.15, 𝑇 = 50 and 𝑞 = 104.

Solution to Exercise 4.7.1
Here’s one solution.
We use some fancy plot commands to get a certain style — feel free to use simpler ones.
The model is an LQ permanent income / life-cycle model with hump-shaped income

𝑦𝑡 = 𝑚1𝑡 + 𝑚2𝑡2 + 𝜎𝑤𝑡+1

where {𝑤𝑡} is IID 𝑁(0, 1) and the coefficients 𝑚1 and 𝑚2 are chosen so that 𝑝(𝑡) = 𝑚1𝑡 + 𝑚2𝑡2 has an inverted U
shape with

• 𝑝(0) = 0, 𝑝(𝑇 /2) = 𝜇, and
• 𝑝(𝑇 ) = 0

# Model parameters
r = 0.05
β = 1/(1 + r)
T = 50
c_bar = 1.5
σ = 0.15
μ = 2

(continues on next page)
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(continued from previous page)

q = 1e4
m1 = T * (μ/(T/2)**2)
m2 = -(μ/(T/2)**2)

# Formulate as an LQ problem
Q = 1
R = np.zeros((4, 4))
Rf = np.zeros((4, 4))
Rf[0, 0] = q
A = [[1 + r, -c_bar, m1, m2],

[0, 1, 0, 0],
[0, 1, 1, 0],
[0, 1, 2, 1]]

B = [[-1],
[ 0],
[ 0],
[ 0]]

C = [[σ],
[0],
[0],
[0]]

# Compute solutions and simulate
lq = LQ(Q, R, A, B, C, beta=β, T=T, Rf=Rf)
x0 = (0, 1, 0, 0)
xp, up, wp = lq.compute_sequence(x0)

# Convert results back to assets, consumption and income
ap = xp[0, :] # Assets
c = up.flatten() + c_bar # Consumption
time = np.arange(1, T+1)
income = σ * wp[0, 1:] + m1 * time + m2 * time**2 # Income

# Plot results
n_rows = 2
fig, axes = plt.subplots(n_rows, 1, figsize=(12, 10))

plt.subplots_adjust(hspace=0.5)

bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

axes[0].plot(range(1, T+1), income, 'g-', label="non-financial income",
**p_args)

axes[0].plot(range(T), c, 'k-', label="consumption", **p_args)

axes[1].plot(range(T+1), ap.flatten(), 'b-', label="assets", **p_args)
axes[1].plot(range(T+1), np.zeros(T+1), 'k-')

for ax in axes:
ax.grid()
ax.set_xlabel('Time')
ax.legend(ncol=2, **legend_args)

plt.show()
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Exercise 4.7.2
Replicate the figure on work and retirement shown above.
The parameters are 𝑟 = 0.05, 𝛽 = 1/(1 + 𝑟), ̄𝑐 = 4, 𝜇 = 4, 𝜎 = 0.35, 𝐾 = 40, 𝑇 = 60, 𝑠 = 1 and 𝑞 = 104.
To understand the overall procedure, carefully read the section containing that figure.

Hint: First, in order to make our approach work, we must ensure that both LQ problems have the same state variables
and control.
As with previous applications, the control can be set to 𝑢𝑡 = 𝑐𝑡 − ̄𝑐.
For lq_working, 𝑥𝑡, 𝐴, 𝐵, 𝐶 can be chosen as in (4.26).

• Recall that 𝑚1, 𝑚2 are chosen so that 𝑝(𝐾) = 𝜇 and 𝑝(2𝐾) = 0.
For lq_retired, use the same definition of 𝑥𝑡 and 𝑢𝑡, but modify 𝐴, 𝐵, 𝐶 to correspond to constant income 𝑦𝑡 = 𝑠.
For lq_retired, set preferences as in (4.27).
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For lq_working, preferences are the same, except that 𝑅𝑓 should be replaced by the final value function that emerges
from iterating lq_retired back to the start of retirement.
With some careful footwork, the simulation can be generated by patching together the simulations from these two separate
models.

Solution to Exercise 4.7.2
This is a permanent income / life-cycle model with polynomial growth in income over working life followed by a fixed
retirement income.
The model is solved by combining two LQ programming problems as described in the lecture.

# Model parameters
r = 0.05
β = 1/(1 + r)
T = 60
K = 40
c_bar = 4
σ = 0.35
μ = 4
q = 1e4
s = 1
m1 = 2 * μ/K
m2 = -μ/K**2

# Formulate LQ problem 1 (retirement)
Q = 1
R = np.zeros((4, 4))
Rf = np.zeros((4, 4))
Rf[0, 0] = q
A = [[1 + r, s - c_bar, 0, 0],

[0, 1, 0, 0],
[0, 1, 1, 0],
[0, 1, 2, 1]]

B = [[-1],
[ 0],
[ 0],
[ 0]]

C = [[0],
[0],
[0],
[0]]

# Initialize LQ instance for retired agent
lq_retired = LQ(Q, R, A, B, C, beta=β, T=T-K, Rf=Rf)
# Iterate back to start of retirement, record final value function
for i in range(T-K):

lq_retired.update_values()
Rf2 = lq_retired.P

# Formulate LQ problem 2 (working life)
R = np.zeros((4, 4))
A = [[1 + r, -c_bar, m1, m2],

[0, 1, 0, 0],
[0, 1, 1, 0],

(continues on next page)
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[0, 1, 2, 1]]
B = [[-1],

[ 0],
[ 0],
[ 0]]

C = [[σ],
[0],
[0],
[0]]

# Set up working life LQ instance with terminal Rf from lq_retired
lq_working = LQ(Q, R, A, B, C, beta=β, T=K, Rf=Rf2)

# Simulate working state / control paths
x0 = (0, 1, 0, 0)
xp_w, up_w, wp_w = lq_working.compute_sequence(x0)
# Simulate retirement paths (note the initial condition)
xp_r, up_r, wp_r = lq_retired.compute_sequence(xp_w[:, K])

# Convert results back to assets, consumption and income
xp = np.column_stack((xp_w, xp_r[:, 1:]))
assets = xp[0, :] # Assets

up = np.column_stack((up_w, up_r))
c = up.flatten() + c_bar # Consumption

time = np.arange(1, K+1)
income_w = σ * wp_w[0, 1:K+1] + m1 * time + m2 * time**2 # Income
income_r = np.full(T-K, s)
income = np.concatenate((income_w, income_r))

# Plot results
n_rows = 2
fig, axes = plt.subplots(n_rows, 1, figsize=(12, 10))

plt.subplots_adjust(hspace=0.5)

bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

axes[0].plot(range(1, T+1), income, 'g-', label="non-financial income",
**p_args)

axes[0].plot(range(T), c, 'k-', label="consumption", **p_args)

axes[1].plot(range(T+1), assets, 'b-', label="assets", **p_args)
axes[1].plot(range(T+1), np.zeros(T+1), 'k-')

for ax in axes:
ax.grid()
ax.set_xlabel('Time')
ax.legend(ncol=2, **legend_args)

plt.show()
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Exercise 4.7.3
Reproduce the figures from the monopolist application given above.
For parameters, use 𝑎0 = 5, 𝑎1 = 0.5, 𝜎 = 0.15, 𝜌 = 0.9, 𝛽 = 0.95 and 𝑐 = 2, while 𝛾 varies between 1 and 50 (see
figures).

Solution to Exercise 4.7.3
The first task is to find the matrices 𝐴, 𝐵, 𝐶, 𝑄, 𝑅 that define the LQ problem.
Recall that 𝑥𝑡 = ( ̄𝑞𝑡 𝑞𝑡 1)′, while 𝑢𝑡 = 𝑞𝑡+1 − 𝑞𝑡.
Letting 𝑚0 ∶= (𝑎0 − 𝑐)/2𝑎1 and 𝑚1 ∶= 1/2𝑎1, we can write ̄𝑞𝑡 = 𝑚0 + 𝑚1𝑑𝑡, and then, with some manipulation

̄𝑞𝑡+1 = 𝑚0(1 − 𝜌) + 𝜌 ̄𝑞𝑡 + 𝑚1𝜎𝑤𝑡+1

By our definition of 𝑢𝑡, the dynamics of 𝑞𝑡 are 𝑞𝑡+1 = 𝑞𝑡 + 𝑢𝑡.
Using these facts you should be able to build the correct 𝐴, 𝐵, 𝐶 matrices (and then check them against those found in
the solution code below).
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Suitable 𝑅, 𝑄 matrices can be found by inspecting the objective function, which we repeat here for convenience:

min𝔼 {
∞

∑
𝑡=0

𝛽𝑡𝑎1(𝑞𝑡 − ̄𝑞𝑡)2 + 𝛾𝑢2
𝑡 }

Our solution code is

# Model parameters
a0 = 5
a1 = 0.5
σ = 0.15
ρ = 0.9
γ = 1
β = 0.95
c = 2
T = 120

# Useful constants
m0 = (a0-c)/(2 * a1)
m1 = 1/(2 * a1)

# Formulate LQ problem
Q = γ
R = [[ a1, -a1, 0],

[-a1, a1, 0],
[ 0, 0, 0]]

A = [[ρ, 0, m0 * (1 - ρ)],
[0, 1, 0],
[0, 0, 1]]

B = [[0],
[1],
[0]]

C = [[m1 * σ],
[ 0],
[ 0]]

lq = LQ(Q, R, A, B, C=C, beta=β)

# Simulate state / control paths
x0 = (m0, 2, 1)
xp, up, wp = lq.compute_sequence(x0, ts_length=150)
q_bar = xp[0, :]
q = xp[1, :]

# Plot simulation results
fig, ax = plt.subplots(figsize=(10, 6.5))

# Some fancy plotting stuff -- simplify if you prefer
bbox = (0., 1.01, 1., .101)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.6}

time = range(len(q))
ax.set(xlabel='Time', xlim=(0, max(time)))
ax.plot(time, q_bar, 'k-', lw=2, alpha=0.6, label=r'$\bar q_t$')
ax.plot(time, q, 'b-', lw=2, alpha=0.6, label='$q_t$')
ax.legend(ncol=2, **legend_args)

(continues on next page)
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(continued from previous page)

s = f'dynamics with $\gamma = {γ}$'
ax.text(max(time) * 0.6, 1 * q_bar.max(), s, fontsize=14)
plt.show()
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CHAPTER

FIVE

LAGRANGIAN FOR LQ CONTROL

!pip install quantecon

import numpy as np
from quantecon import LQ
from scipy.linalg import schur

5.1 Overview

This is a sequel to this lecture linear quadratic dynamic programming
It can also be regarded as presenting invariant subspace techniques that extend ones that we encountered earlier in this
lecture stability in linear rational expectations models
We present a Lagrangian formulation of an infinite horizon linear quadratic undiscounted dynamic programming problem.
Such a problem is also sometimes called an optimal linear regulator problem.
A Lagrangian formulation

• carries insights about connections between stability and optimality
• is the basis for fast algorithms for solving Riccati equations
• opens the way to constructing solutions of dynamic systems that don’t come directly from an intertemporal opti-
mization problem

A key tool in this lecture is the concept of an 𝑛 × 𝑛 symplectic matrix.
A symplectic matrix has eigenvalues that occur in reciprocal pairs, meaning that if 𝜆𝑖 ∈ (−1, 1) is an eigenvalue, then
so is 𝜆−1

𝑖 .
This reciprocal pairs property of the eigenvalues of a matrix is a tell-tale sign that the matrix describes the joint dynamics
of a system of equations describing the states and costates that constitute first-order necessary conditions for solving an
undiscounted linear-quadratic infinite-horizon optimization problem.
The symplectic matrix that will interest us describes the first-order dynamics of state and co-state vectors of an optimally
controlled system.
In focusing on eigenvalues and eigenvectors of this matrix, we capitalize on an analysis of invariant subspaces.
These invariant subspace formulations of LQ dynamic programming problems provide a bridge between recursive (i.e.,
dynamic programming) formulations and classical formulations of linear control and linear filtering problems that make
use of related matrix decompositions (see for example this lecture and this lecture).
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While most of this lecture focuses on undiscounted problems, later sections describe handy ways of transforming dis-
counted problems to undiscounted ones.
The techniques in this lecture will prove useful when we study Stackelberg and Ramsey problem in this lecture.

5.2 Undiscounted LQ DP Problem

The problem is to choose a sequence of controls {𝑢𝑡}∞
𝑡=0 to maximize the criterion

−
∞

∑
𝑡=0

{𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡}

subject to 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡, where 𝑥0 is a given initial state vector.
Here 𝑥𝑡 is an (𝑛 × 1) vector of state variables, 𝑢𝑡 is a (𝑘 × 1) vector of controls, 𝑅 is a positive semidefinite symmetric
matrix, 𝑄 is a positive definite symmetric matrix, 𝐴 is an (𝑛 × 𝑛) matrix, and 𝐵 is an (𝑛 × 𝑘) matrix.
The optimal value function turns out to be quadratic, 𝑉 (𝑥) = −𝑥′𝑃𝑥, where 𝑃 is a positive semidefinite symmetric
matrix.
Using the transition law to eliminate next period’s state, the Bellman equation becomes

−𝑥′𝑃𝑥 = max
𝑢

{−𝑥′𝑅𝑥 − 𝑢′𝑄𝑢 − (𝐴𝑥 + 𝐵𝑢)′𝑃(𝐴𝑥 + 𝐵𝑢)} (5.1)

The first-order necessary conditions for the maximum problem on the right side of equation (5.1) are

Note: We use the following rules for differentiating quadratic and bilinear matrix forms: 𝜕𝑥′𝐴𝑥
𝜕𝑥 = (𝐴 + 𝐴′)𝑥; 𝜕𝑦′𝐵𝑧

𝜕𝑦 =
𝐵𝑧, 𝜕𝑦′𝐵𝑧

𝜕𝑧 = 𝐵′𝑦.

(𝑄 + 𝐵′𝑃𝐵)𝑢 = −𝐵′𝑃𝐴𝑥,

which implies that an optimal decision rule for 𝑢 is

𝑢 = −(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥

or

𝑢 = −𝐹𝑥,

where

𝐹 = (𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴.

Substituting 𝑢 = −(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥 into the right side of equation (5.1) and rearranging gives

𝑃 = 𝑅 + 𝐴′𝑃𝐴 − 𝐴′𝑃𝐵(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴. (5.2)

Equation (5.2) is called an algebraic matrix Riccati equation.
There are multiple solutions of equation (5.2).
But only one of them is positive definite.
The positive define solution is associated with the maximum of our problem.
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It expresses the matrix 𝑃 as an implicit function of the matrices 𝑅, 𝑄, 𝐴, 𝐵.
Notice that the gradient of the value function is

𝜕𝑉 (𝑥)
𝜕𝑥 = −2𝑃𝑥 (5.3)

We shall use fact (5.3) later.

5.3 Lagrangian

For the undiscounted optimal linear regulator problem, form the Lagrangian

𝐿 = −
∞

∑
𝑡=0

{𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝜇′
𝑡+1[𝐴𝑥𝑡 + 𝐵𝑢𝑡 − 𝑥𝑡+1]} (5.4)

where 2𝜇𝑡+1 is a vector of Lagrange multipliers on the time 𝑡 transition law 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡.
(We put the 2 in front of 𝜇𝑡+1 to make things match up nicely with equation (5.3).)
First-order conditions for maximization with respect to {𝑢𝑡, 𝑥𝑡+1}∞

𝑡=0 are

2𝑄𝑢𝑡 + 2𝐵′𝜇𝑡+1 = 0 , 𝑡 ≥ 0
𝜇𝑡 = 𝑅𝑥𝑡 + 𝐴′𝜇𝑡+1 , 𝑡 ≥ 1. (5.5)

Define 𝜇0 to be a vector of shadow prices of 𝑥0 and apply an envelope condition to (5.4) to deduce that

𝜇0 = 𝑅𝑥0 + 𝐴′𝜇1,
which is a time 𝑡 = 0 counterpart to the second equation of system (5.5).
An important fact is that

𝜇𝑡+1 = 𝑃𝑥𝑡+1 (5.6)

where 𝑃 is a positive define matrix that solves the algebraic Riccati equation (5.2).
Thus, from equations (5.3) and (5.6), −2𝜇𝑡 is the gradient of the value function with respect to 𝑥𝑡.
The Lagrange multiplier vector 𝜇𝑡 is often called the costate vector that corresponds to the state vector 𝑥𝑡.
It is useful to proceed with the following steps:

• solve the first equation of (5.5) for 𝑢𝑡 in terms of 𝜇𝑡+1.
• substitute the result into the law of motion 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡.
• arrange the resulting equation and the second equation of (5.5) into the form

𝐿 (𝑥𝑡+1
𝜇𝑡+1

) = 𝑁 (𝑥𝑡
𝜇𝑡

) , 𝑡 ≥ 0, (5.7)

where

𝐿 = (𝐼 𝐵𝑄−1𝐵′

0 𝐴′ ) , 𝑁 = ( 𝐴 0
−𝑅 𝐼) .

When 𝐿 is of full rank (i.e., when 𝐴 is of full rank), we can write system (5.7) as

(𝑥𝑡+1
𝜇𝑡+1

) = 𝑀 (𝑥𝑡
𝜇𝑡

) (5.8)

where

𝑀 ≡ 𝐿−1𝑁 = (𝐴 + 𝐵𝑄−1𝐵′𝐴′−1𝑅 −𝐵𝑄−1𝐵′𝐴′−1

−𝐴′−1𝑅 𝐴′−1 ) . (5.9)
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5.4 State-Costate Dynamics

We seek to solve the difference equation system (5.8) for a sequence {𝑥𝑡}∞
𝑡=0 that satisfies

• an initial condition for 𝑥0

• a terminal condition lim𝑡→+∞ 𝑥𝑡 = 0
This terminal condition reflects our desire for a stable solution, one that does not diverge as 𝑡 → ∞.
We inherit our wish for stability of the {𝑥𝑡} sequence from a desire to maximize

−
∞

∑
𝑡=0

[𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡],

which requires that 𝑥′
𝑡𝑅𝑥𝑡 converge to zero as 𝑡 → +∞.

5.5 Reciprocal Pairs Property

To proceed, we study properties of the (2𝑛 × 2𝑛) matrix 𝑀 defined in (5.9).
It helps to introduce a (2𝑛 × 2𝑛) matrix

𝐽 = ( 0 −𝐼𝑛
𝐼𝑛 0 ) .

The rank of 𝐽 is 2𝑛.
Definition: A matrix 𝑀 is called symplectic if

𝑀𝐽𝑀 ′ = 𝐽. (5.10)

Salient properties of symplectic matrices that are readily verified include:
• If 𝑀 is symplectic, then 𝑀2 is symplectic
• The determinant of a symplectic, then det(𝑀) = 1

It can be verified directly that 𝑀 in equation (5.9) is symplectic.
It follows from equation (5.10) and from the fact 𝐽−1 = 𝐽 ′ = −𝐽 that for any symplectic matrix 𝑀 ,

𝑀 ′ = 𝐽−1𝑀−1𝐽. (5.11)

Equation (5.11) states that 𝑀 ′ is related to the inverse of 𝑀 by a similarity transformation.
For square matrices, recall that

• similar matrices share eigenvalues
• eigenvalues of the inverse of a matrix are inverses of eigenvalues of the matrix
• a matrix and its transpose share eigenvalues

It then follows from equation (5.11) that the eigenvalues of 𝑀 occur in reciprocal pairs: if 𝜆 is an eigenvalue of 𝑀 , so is
𝜆−1.
Write equation (5.8) as

𝑦𝑡+1 = 𝑀𝑦𝑡 (5.12)
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where 𝑦𝑡 = (𝑥𝑡
𝜇𝑡

).

Consider a triangularization of 𝑀

𝑉 −1𝑀𝑉 = (𝑊11 𝑊12
0 𝑊22

) (5.13)

where
• each block on the right side is (𝑛 × 𝑛)
• 𝑉 is nonsingular
• all eigenvalues of 𝑊22 exceed 1 in modulus
• all eigenvalues of 𝑊11 are less than 1 in modulus

5.6 Schur decomposition

The Schur decomposition and the eigenvalue decomposition are two decompositions of the form (5.13).
Write equation (5.12) as

𝑦𝑡+1 = 𝑉 𝑊𝑉 −1𝑦𝑡. (5.14)

A solution of equation (5.14) for arbitrary initial condition 𝑦0 is evidently

𝑦𝑡 = 𝑉 [𝑊 𝑡
11 𝑊12,𝑡

0 𝑊 𝑡
22

] 𝑉 −1𝑦0 (5.15)

where 𝑊12,𝑡 = 𝑊12 for 𝑡 = 1 and for 𝑡 ≥ 2 obeys the recursion

𝑊12,𝑡 = 𝑊 𝑡−1
11 𝑊12,𝑡−1 + 𝑊12,𝑡−1𝑊 𝑡−1

22

and where 𝑊 𝑡
𝑖𝑖 is 𝑊𝑖𝑖 raised to the 𝑡th power.

Write equation (5.15) as

(𝑦∗
1𝑡

𝑦∗
2𝑡

) = [𝑊 𝑡
11 𝑊12,𝑡

0 𝑊 𝑡
22

] (𝑦∗
10

𝑦∗
20

)

where 𝑦∗
𝑡 = 𝑉 −1𝑦𝑡, and in particular where

𝑦∗
2𝑡 = 𝑉 21𝑥𝑡 + 𝑉 22𝜇𝑡, (5.16)

and where 𝑉 𝑖𝑗 denotes the (𝑖, 𝑗) piece of the partitioned 𝑉 −1 matrix.
Because 𝑊22 is an unstable matrix, 𝑦∗

𝑡 will diverge unless 𝑦∗
20 = 0.

Let 𝑉 𝑖𝑗 denote the (𝑖, 𝑗) piece of the partitioned 𝑉 −1 matrix.
To attain stability, we must impose 𝑦∗

20 = 0, which from equation (5.16) implies

𝑉 21𝑥0 + 𝑉 22𝜇0 = 0

or

𝜇0 = −(𝑉 22)−1𝑉 21𝑥0.
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This equation replicates itself over time in the sense that it implies

𝜇𝑡 = −(𝑉 22)−1𝑉 21𝑥𝑡.

But notice that because (𝑉 21 𝑉 22) is the second row block of the inverse of 𝑉 , it follows that

(𝑉 21 𝑉 22) (𝑉11
𝑉21

) = 0

which implies

𝑉 21𝑉11 + 𝑉 22𝑉21 = 0.

Therefore,

−(𝑉 22)−1𝑉 21 = 𝑉21𝑉 −1
11 .

So we can write

𝜇0 = 𝑉21𝑉 −1
11 𝑥0

and

𝜇𝑡 = 𝑉21𝑉 −1
11 𝑥𝑡.

However, we know that 𝜇𝑡 = 𝑃𝑥𝑡, where 𝑃 occurs in the matrix that solves the Riccati equation.
Thus, the preceding argument establishes that

𝑃 = 𝑉21𝑉 −1
11 . (5.17)

Remarkably, formula (5.17) provides us with a computationally efficient way of computing the positive definite matrix 𝑃
that solves the algebraic Riccati equation (5.2) that emerges from dynamic programming.
This same method can be applied to compute the solution of any system of the form (5.8) if a solution exists, even if
eigenvalues of 𝑀 fail to occur in reciprocal pairs.
The method will typically work so long as the eigenvalues of 𝑀 split half inside and half outside the unit circle.
Systems in which eigenvalues (properly adjusted for discounting) fail to occur in reciprocal pairs arise when the system
being solved is an equilibrium of a model in which there are distortions that prevent there being any optimum problem
that the equilibrium solves. See [Ljungqvist and Sargent, 2018], ch 12.

5.7 Application

Here we demonstrate the computation with an example which is the deterministic version of an example borrowed from
this quantecon lecture.

# Model parameters
r = 0.05
c_bar = 2
μ = 1

# Formulate as an LQ problem
Q = np.array([[1]])

(continues on next page)
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(continued from previous page)

R = np.zeros((2, 2))
A = [[1 + r, -c_bar + μ],

[0, 1]]
B = [[-1],

[0]]

# Construct an LQ instance
lq = LQ(Q, R, A, B)

Given matrices 𝐴, 𝐵, 𝑄, 𝑅, we can then compute 𝐿, 𝑁 , and 𝑀 = 𝐿−1𝑁 .

def construct_LNM(A, B, Q, R):

n, k = lq.n, lq.k

# construct L and N
L = np.zeros((2*n, 2*n))
L[:n, :n] = np.eye(n)
L[:n, n:] = B @ np.linalg.inv(Q) @ B.T
L[n:, n:] = A.T

N = np.zeros((2*n, 2*n))
N[:n, :n] = A
N[n:, :n] = -R
N[n:, n:] = np.eye(n)

# compute M
M = np.linalg.inv(L) @ N

return L, N, M

L, N, M = construct_LNM(lq.A, lq.B, lq.Q, lq.R)

M

array([[ 1.05 , -1. , -0.95238095, 0. ],
[ 0. , 1. , 0. , 0. ],
[ 0. , 0. , 0.95238095, 0. ],
[ 0. , 0. , 0.95238095, 1. ]])

Let’s verify that 𝑀 is symplectic.

n = lq.n
J = np.zeros((2*n, 2*n))
J[n:, :n] = np.eye(n)
J[:n, n:] = -np.eye(n)

M @ J @ M.T - J

array([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])
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We can compute the eigenvalues of 𝑀 using np.linalg.eigvals, arranged in ascending order.

eigvals = sorted(np.linalg.eigvals(M))
eigvals

[0.9523809523809523, 1.0, 1.0, 1.05]

When we apply Schur decomposition such that 𝑀 = 𝑉 𝑊𝑉 −1, we want
• the upper left block of 𝑊 , 𝑊11, to have all of its eigenvalues less than 1 in modulus, and
• the lower right block 𝑊22 to have eigenvalues that exceed 1 in modulus.

To get what we want, let’s define a sorting function that tells scipy.schur to sort the corresponding eigenvalues with
modulus smaller than 1 to the upper left.

stable_eigvals = eigvals[:n]

def sort_fun(x):
"Sort the eigenvalues with modules smaller than 1 to the top-left."

if x in stable_eigvals:
stable_eigvals.pop(stable_eigvals.index(x))
return True

else:
return False

W, V, _ = schur(M, sort=sort_fun)

W

array([[ 1. , -0.02316402, -1.00085948, -0.95000594],
[ 0. , 0.95238095, -0.00237501, -0.95325452],
[ 0. , 0. , 1.05 , 0.02432222],
[ 0. , 0. , 0. , 1. ]])

V

array([[ 0.99875234, 0.00121459, -0.04992284, 0. ],
[ 0.04993762, -0.02429188, 0.99845688, 0. ],
[ 0. , 0.04992284, 0.00121459, 0.99875234],
[ 0. , -0.99845688, -0.02429188, 0.04993762]])

We can check the modulus of eigenvalues of 𝑊11 and 𝑊22.
Since they are both triangular matrices, eigenvalues are the diagonal elements.

# W11
np.diag(W[:n, :n])

array([1. , 0.95238095])

# W22
np.diag(W[n:, n:])
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array([1.05, 1. ])

The following functions wrap 𝑀 matrix construction, Schur decomposition, and stability-imposing computation of 𝑃 .

def stable_solution(M, verbose=True):
"""
Given a system of linear difference equations

y' = |a b| y
x' = |c d| x

which is potentially unstable, find the solution
by imposing stability.

Parameter
---------
M : np.ndarray(float)

The matrix represents the linear difference equations system.
"""
n = M.shape[0] // 2
stable_eigvals = list(sorted(np.linalg.eigvals(M))[:n])

def sort_fun(x):
"Sort the eigenvalues with modules smaller than 1 to the top-left."

if x in stable_eigvals:
stable_eigvals.pop(stable_eigvals.index(x))
return True

else:
return False

W, V, _ = schur(M, sort=sort_fun)
if verbose:

print('eigenvalues:\n')
print(' W11: {}'.format(np.diag(W[:n, :n])))
print(' W22: {}'.format(np.diag(W[n:, n:])))

# compute V21 V11^{-1}
P = V[n:, :n] @ np.linalg.inv(V[:n, :n])

return W, V, P

def stationary_P(lq, verbose=True):
"""
Computes the matrix :math:`P` that represent the value function

V(x) = x' P x

in the infinite horizon case. Computation is via imposing stability
on the solution path and using Schur decomposition.

Parameters
----------
lq : qe.LQ

QuantEcon class for analyzing linear quadratic optimal control
problems of infinite horizon form.

(continues on next page)
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(continued from previous page)

Returns
-------
P : array_like(float)

P matrix in the value function representation.
"""

Q = lq.Q
R = lq.R
A = lq.A * lq.beta ** (1/2)
B = lq.B * lq.beta ** (1/2)

n, k = lq.n, lq.k

L, N, M = construct_LNM(A, B, Q, R)
W, V, P = stable_solution(M, verbose=verbose)

return P

# compute P
stationary_P(lq)

eigenvalues:

W11: [1. 0.95238095]
W22: [1.05 1. ]

array([[ 0.1025, -2.05 ],
[-2.05 , 41. ]])

Note that the matrix 𝑃 computed in this way is close to what we get from the routine in quantecon that solves an algebraic
Riccati equation by iterating to convergence on a Riccati difference equation.
The small difference comes from computational errors and will decrease as we increase the maximum number of iterations
or decrease the tolerance for convergence.

lq.stationary_values()

(array([[ 0.1025, -2.05 ],
[-2.05 , 41.01 ]]),

array([[-0.09761905, 1.95238095]]),
0)

Using a Schur decomposition is much more efficient.

%%timeit
stationary_P(lq, verbose=False)

72.4 µs ± 241 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

%%timeit
lq.stationary_values()
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1.16 ms ± 2.52 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

5.8 Other Applications

The preceding approach to imposing stability on a system of potentially unstable linear difference equations is not limited
to linear quadratic dynamic optimization problems.
For example, the same method is used in our Stability in Linear Rational Expectations Models lecture.
Let’s try to solve the model described in that lecture by applying the stable_solution function defined in this lecture
above.

def construct_H(ρ, λ, δ):
"contruct matrix H given parameters."

H = np.empty((2, 2))
H[0, :] = ρ,δ
H[1, :] = - (1 - λ) / λ, 1 / λ

return H

H = construct_H(ρ=.9, λ=.5, δ=0)

W, V, P = stable_solution(H)
P

eigenvalues:

W11: [0.9]
W22: [2.]

array([[0.90909091]])

5.9 Discounted Problems

5.9.1 Transforming States and Controls to Eliminate Discounting

A pair of useful transformations allows us to convert a discounted problem into an undiscounted one.
Thus, suppose that we have a discounted problem with objective

−
∞

∑
𝑡=0

𝛽𝑡{𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡}

and that the state transition equation is again 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡.
Define the transformed state and control variables

• ̂𝑥𝑡 = 𝛽 𝑡
2 𝑥𝑡

• 𝑢̂𝑡 = 𝛽 𝑡
2 𝑢𝑡
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and the transformed transition equation matrices

• ̂𝐴 = 𝛽 1
2 𝐴

• 𝐵̂ = 𝛽 1
2 𝐵

so that the adjusted state and control variables obey the transition law

̂𝑥𝑡+1 = ̂𝐴 ̂𝑥𝑡 + 𝐵̂𝑢̂𝑡.

Then a discounted optimal control problem defined by 𝐴, 𝐵, 𝑅, 𝑄, 𝛽 having optimal policy characterized by 𝑃 , 𝐹 is
associated with an equivalent undiscounted problem defined by ̂𝐴, 𝐵̂, 𝑄, 𝑅 having optimal policy characterized by ̂𝐹 , ̂𝑃
that satisfy the following equations:

̂𝐹 = (𝑄 + 𝐵′ ̂𝑃𝐵)−1𝐵̂′𝑃 ̂𝐴

and

̂𝑃 = 𝑅 + ̂𝐴′𝑃 ̂𝐴 − ̂𝐴′𝑃𝐵̂(𝑄 + 𝐵′ ̂𝑃 𝐵̂)−1𝐵̂′𝑃 ̂𝐴

It follows immediately from the definitions of ̂𝐴, 𝐵̂ that ̂𝐹 = 𝐹 and ̂𝑃 = 𝑃 .
By exploiting these transformations, we can solve a discounted problem by solving an associated undiscounted problem.
In particular, we can first transform a discounted LQ problem to an undiscounted one and then solve that discounted
optimal regulator problem using the Lagrangian and invariant subspace methods described above.

For example, when 𝛽 = 1
1+𝑟 , we can solve for 𝑃 with ̂𝐴 = 𝛽1/2𝐴 and 𝐵̂ = 𝛽1/2𝐵.

These settings are adopted by default in the function stationary_P defined above.

β = 1 / (1 + r)
lq.beta = β

stationary_P(lq)

eigenvalues:

W11: [0.97590007 0.97590007]
W22: [1.02469508 1.02469508]

array([[ 0.0525, -1.05 ],
[-1.05 , 21. ]])

We can verify that the solution agrees with one that comes from applying the routine LQ.stationary_values in
the quantecon package.

lq.stationary_values()

(array([[ 0.0525, -1.05 ],
[-1.05 , 21. ]]),

array([[-0.05, 1. ]]),
0.0)
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5.9.2 Lagrangian for Discounted Problem

For several purposes, it is useful explicitly briefly to describe a Lagrangian for a discounted problem.
Thus, for the discounted optimal linear regulator problem, form the Lagrangian

𝐿 = −
∞

∑
𝑡=0

𝛽𝑡{𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝛽𝜇′
𝑡+1[𝐴𝑥𝑡 + 𝐵𝑢𝑡 − 𝑥𝑡+1]} (5.18)

where 2𝜇𝑡+1 is a vector of Lagrange multipliers on the state vector 𝑥𝑡+1.
First-order conditions for maximization with respect to {𝑢𝑡, 𝑥𝑡+1}∞

𝑡=0 are

2𝑄𝑢𝑡 + 2𝛽𝐵′𝜇𝑡+1 = 0 , 𝑡 ≥ 0
𝜇𝑡 = 𝑅𝑥𝑡 + 𝛽𝐴′𝜇𝑡+1 , 𝑡 ≥ 1. (5.19)

Define 2𝜇0 to be the vector of shadow prices of 𝑥0 and apply an envelope condition to (5.18) to deduce that

𝜇0 = 𝑅𝑥0 + 𝛽𝐴′𝜇1,

which is a time 𝑡 = 0 counterpart to the second equation of system (5.19).
Proceeding as we did above with the undiscounted system (5.5), we can rearrange the first-order conditions into the system

[𝐼 𝛽𝐵𝑄−1𝐵′

0 𝛽𝐴′ ] [𝑥𝑡+1
𝜇𝑡+1

] = [ 𝐴 0
−𝑅 𝐼] [𝑥𝑡

𝜇𝑡
] (5.20)

which in the special case that 𝛽 = 1 agrees with equation (5.5), as expected.
By staring at system (5.20), we can infer identities that shed light on the structure of optimal linear regulator problems,
some of which will be useful in this lecture when we apply and extend the methods of this lecture to study Stackelberg
and Ramsey problems.
First, note that the first block of equation system (5.20) asserts that when 𝜇𝑡+1 = 𝑃𝑥𝑡+1, then

(𝐼 + 𝛽𝑄−1𝐵′𝑃𝐵𝑃)𝑥𝑡+1 = 𝐴𝑥𝑡,

which can be rearranged to sbe

𝑥𝑡+1 = (𝐼 + 𝛽𝐵𝑄−1𝐵′𝑃)−1𝐴𝑥𝑡.

This expression for the optimal closed loop dynamics of the state must agree with an alternative expression that we had
derived with dynamic programming, namely,

𝑥𝑡+1 = (𝐴 − 𝐵𝐹)𝑥𝑡.

But using

𝐹 = 𝛽(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃𝐴 (5.21)

it follows that

𝐴 − 𝐵𝐹 = (𝐼 − 𝛽𝐵(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃)𝐴.

Thus, our two expressions for the closed loop dynamics agree if and only if

(𝐼 + 𝛽𝐵𝑄−1𝐵′𝑃)−1 = (𝐼 − 𝛽𝐵(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃). (5.22)

Matrix equation (5.22) can be verified by applying a partitioned inverse formula.
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Note: Just use the formula (𝑎 − 𝑏𝑑−1𝑐)−1 = 𝑎−1 + 𝑎−1𝑏(𝑑 − 𝑐𝑎−1𝑏)−1𝑐𝑎−1 for appropriate choices of the matrices
𝑎, 𝑏, 𝑐, 𝑑.

Next, note that for any fixed 𝐹 for which eigenvalues of𝐴−𝐵𝐹 are less than 1
𝛽 in modulus, the value function associated

with using this rule forever is −𝑥0 ̃𝑃 𝑥0 where ̃𝑃 obeys the following matrix equation:

̃𝑃 = (𝑅 + 𝐹 ′𝑄𝐹) + 𝛽(𝐴 − 𝐵𝐹)′𝑃(𝐴 − 𝐵𝐹). (5.23)

Evidently, ̃𝑃 = 𝑃 only when 𝐹 obeys formula (5.21).
Next, note that the second equation of system (5.20) implies the “forward looking” equation for the Lagrange multiplier

𝜇𝑡 = 𝑅𝑥𝑡 + 𝛽𝐴′𝜇𝑡+1

whose solution is

𝜇𝑡 = 𝑃𝑥𝑡,

where

𝑃 = 𝑅 + 𝛽𝐴′𝑃(𝐴 − 𝐵𝐹) (5.24)

where we must require that 𝐹 obeys equation (5.21).
Equations (5.23) and (5.24) provide different perspectives on the optimal value function.
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CHAPTER

SIX

ELIMINATING CROSS PRODUCTS

6.1 Overview

This lecture describes formulas for eliminating
• cross products between states and control in linear-quadratic dynamic programming problems
• covariances between state and measurement noises in Kalman filtering problems

For a linear-quadratic dynamic programming problem, the idea involves these steps
• transform states and controls in a way that leads to an equivalent problem with no cross-products between trans-
formed states and controls

• solve the transformed problem using standard formulas for problems with no cross-products between states and
controls presented in this lecture Linear Control: Foundations

• transform the optimal decision rule for the altered problem into the optimal decision rule for the original problem
with cross-products between states and controls

6.2 Undiscounted Dynamic Programming Problem

Here is a nonstochastic undiscounted LQ dynamic programming with cross products between states and controls in the
objective function.
The problem is defined by the 5-tuple ofmatrices (𝐴, 𝐵, 𝑅, 𝑄, 𝐻)where𝑅 and𝑄 are positive definite symmetricmatrices
and 𝐴 ∼ 𝑚 × 𝑚, 𝐵 ∼ 𝑚 × 𝑘, 𝑄 ∼ 𝑘 × 𝑘, 𝑅 ∼ 𝑚 × 𝑚 and 𝐻 ∼ 𝑘 × 𝑚.
The problem is to choose {𝑥𝑡+1, 𝑢𝑡}∞

𝑡=0 to maximize

−
∞

∑
𝑡=0

(𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝑢𝑡𝐻𝑥𝑡)

subject to the linear constraints

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡, 𝑡 ≥ 0

where 𝑥0 is a given initial condition.
The solution to this undiscounted infinite-horizon problem is a time-invariant feedback rule

𝑢𝑡 = −𝐹𝑥𝑡

95



Dynamic Linear Economies

where

𝐹 = −(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴

and 𝑃 ∼ 𝑚 × 𝑚 is a positive definite solution of the algebraic matrix Riccati equation

𝑃 = 𝑅 + 𝐴′𝑃𝐴 − (𝐴′𝑃𝐵 + 𝐻′)(𝑄 + 𝐵′𝑃𝐵)−1(𝐵′𝑃𝐴 + 𝐻).

It can be verified that an equivalent problem without cross-products between states and controls is defined by a 4-tuple
of matrices : (𝐴∗, 𝐵, 𝑅∗, 𝑄).
That the omitted matrix 𝐻 = 0 indicates that there are no cross products between states and controls in the equivalent
problem.
The matrices (𝐴∗, 𝐵, 𝑅∗, 𝑄) defining the equivalent problem and the value function, policy function matrices 𝑃 , 𝐹 ∗ that
solve it are related to the matrices (𝐴, 𝐵, 𝑅, 𝑄, 𝐻) defining the original problem and the value function, policy function
matrices 𝑃 , 𝐹 that solve the original problem by

𝐴∗ = 𝐴 − 𝐵𝑄−1𝐻,
𝑅∗ = 𝑅 − 𝐻′𝑄−1𝐻,
𝑃 = 𝑅∗ + 𝐴∗′𝑃𝐴 − (𝐴∗′𝑃𝐵)(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴∗,

𝐹 ∗ = (𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴∗,
𝐹 = 𝐹 ∗ + 𝑄−1𝐻.

6.3 Kalman Filter

The duality that prevails between a linear-quadratic optimal control and a Kalman filtering problemmeans that there is an
analogous transformation that allows us to transform a Kalman filtering problem with non-zero covariance matrix between
between shocks to states and shocks to measurements to an equivalent Kalman filtering problem with zero covariance
between shocks to states and measurments.
Let’s look at the appropriate transformations.
First, let’s recall the Kalman filter with covariance between noises to states and measurements.
The hidden Markov model is

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑤𝑡+1,
𝑧𝑡+1 = 𝐷𝑥𝑡 + 𝐹𝑤𝑡+1,

where 𝐴 ∼ 𝑚 × 𝑚, 𝐵 ∼ 𝑚 × 𝑝 and 𝐷 ∼ 𝑘 × 𝑚, 𝐹 ∼ 𝑘 × 𝑝, and 𝑤𝑡+1 is the time 𝑡 + 1 component of a sequence of
i.i.d. 𝑝 × 1 normally distibuted random vectors with mean vector zero and covariance matrix equal to a 𝑝 × 𝑝 identity
matrix.
Thus, 𝑥𝑡 is 𝑚 × 1 and 𝑧𝑡 is 𝑘 × 1.
The Kalman filtering formulas are

𝐾(Σ𝑡) = (𝐴Σ𝑡𝐷′ + 𝐵𝐹 ′)(𝐷Σ𝑡𝐷′ + 𝐹𝐹 ′)−1,
Σ𝑡+1 = 𝐴Σ𝑡𝐴′ + 𝐵𝐵′ − (𝐴Σ𝑡𝐷′ + 𝐵𝐹 ′)(𝐷Σ𝑡𝐷′ + 𝐹𝐹 ′)−1(𝐷Σ𝑡𝐴′ + 𝐹𝐵′).

Define tranformed matrices

𝐴∗ = 𝐴 − 𝐵𝐹 ′(𝐹𝐹 ′)−1𝐷,
𝐵∗𝐵∗′ = 𝐵𝐵′ − 𝐵𝐹 ′(𝐹𝐹 ′)−1𝐹𝐵′.
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6.3.1 Algorithm

A consequence of formulas {eq}`eq:Kalman102} is that we can use the following algorithm to solve Kalman filtering
problems that involve non zero covariances between state and signal noises.
First, compute Σ, 𝐾∗ using the ordinary Kalman filtering formula with 𝐵𝐹 ′ = 0, i.e., with zero covariance matrix
between random shocks to states and random shocks to measurements.
That is, compute 𝐾∗ and Σ that satisfy

𝐾∗ = (𝐴∗Σ𝐷′)(𝐷Σ𝐷′ + 𝐹𝐹 ′)−1

Σ = 𝐴∗Σ𝐴∗′ + 𝐵∗𝐵∗′ − (𝐴∗Σ𝐷′)(𝐷Σ𝐷′ + 𝐹𝐹 ′)−1(𝐷Σ𝐴∗′).

The Kalman gain for the original problem with non-zero covariance between shocks to states and measurements is then

𝐾 = 𝐾∗ + 𝐵𝐹 ′(𝐹𝐹 ′)−1,

The state reconstruction covariance matrix Σ for the original problem equals the state reconstrution covariance matrix for
the transformed problem.

6.4 Duality table

Here is a handy table to remember how the Kalman filter and dynamic program are related.

Dynamic Program Kalman Filter
𝐴 𝐴′

𝐵 𝐷′

𝐻 𝐹𝐵′

𝑄 𝐹𝐹 ′

𝑅 𝐵𝐵′

𝐹 𝐾′

𝑃 Σ
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CHAPTER

SEVEN

THE PERMANENT INCOME MODEL

Contents

• The Permanent Income Model
– Overview

– The Savings Problem

– Alternative Representations

– Two Classic Examples

– Further Reading

– Appendix: The Euler Equation

7.1 Overview

This lecture describes a rational expectations version of the famous permanent income model of Milton Friedman [Fried-
man, 1956].
Robert Hall cast Friedman’s model within a linear-quadratic setting [Hall, 1978].
Like Hall, we formulate an infinite-horizon linear-quadratic savings problem.
We use the model as a vehicle for illustrating

• alternative formulations of the state of a dynamic system
• the idea of cointegration
• impulse response functions
• the idea that changes in consumption are useful as predictors of movements in income

Background readings on the linear-quadratic-Gaussian permanent income model are Hall’s [Hall, 1978] and chapter 2 of
[Ljungqvist and Sargent, 2018].
Let’s start with some imports

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import numpy as np
import random
from numba import njit
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7.2 The Savings Problem

In this section, we state and solve the savings and consumption problem faced by the consumer.

7.2.1 Preliminaries

We use a class of stochastic processes called martingales.
A discrete-time martingale is a stochastic process (i.e., a sequence of random variables) {𝑋𝑡} with finite mean at each 𝑡
and satisfying

𝔼𝑡[𝑋𝑡+1] = 𝑋𝑡, 𝑡 = 0, 1, 2, …

Here 𝔼𝑡 ∶= 𝔼[⋅ | ℱ𝑡] is a conditional mathematical expectation conditional on the time 𝑡 information set ℱ𝑡.
The latter is just a collection of random variables that the modeler declares to be visible at 𝑡.

• When not explicitly defined, it is usually understood that ℱ𝑡 = {𝑋𝑡, 𝑋𝑡−1, … , 𝑋0}.
Martingales have the feature that the history of past outcomes provides no predictive power for changes between current
and future outcomes.
For example, the current wealth of a gambler engaged in a “fair game” has this property.
One common class of martingales is the family of random walks.
A random walk is a stochastic process {𝑋𝑡} that satisfies

𝑋𝑡+1 = 𝑋𝑡 + 𝑤𝑡+1

for some IID zero mean innovation sequence {𝑤𝑡}.
Evidently, 𝑋𝑡 can also be expressed as

𝑋𝑡 =
𝑡

∑
𝑗=1

𝑤𝑗 + 𝑋0

Not every martingale arises as a random walk (see, for example, Wald’s martingale).

7.2.2 The Decision Problem

A consumer has preferences over consumption streams that are ordered by the utility functional

𝔼0 [
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)] (7.1)

where
• 𝔼𝑡 is the mathematical expectation conditioned on the consumer’s time 𝑡 information
• 𝑐𝑡 is time 𝑡 consumption
• 𝑢 is a strictly concave one-period utility function
• 𝛽 ∈ (0, 1) is a discount factor
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The consumer maximizes (7.1) by choosing a consumption, borrowing plan {𝑐𝑡, 𝑏𝑡+1}∞
𝑡=0 subject to the sequence of

budget constraints

𝑐𝑡 + 𝑏𝑡 = 1
1 + 𝑟𝑏𝑡+1 + 𝑦𝑡 𝑡 ≥ 0 (7.2)

Here
• 𝑦𝑡 is an exogenous endowment process.
• 𝑟 > 0 is a time-invariant risk-free net interest rate.
• 𝑏𝑡 is one-period risk-free debt maturing at 𝑡.

The consumer also faces initial conditions 𝑏0 and 𝑦0, which can be fixed or random.

7.2.3 Assumptions

For the remainder of this lecture, we follow Friedman and Hall in assuming that (1 + 𝑟)−1 = 𝛽.
Regarding the endowment process, we assume it has the state-space representation

𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝑈𝑧𝑡

(7.3)

where
• {𝑤𝑡} is an IID vector process with 𝔼𝑤𝑡 = 0 and 𝔼𝑤𝑡𝑤′

𝑡 = 𝐼 .
• The spectral radius of 𝐴 satisfies 𝜌(𝐴) < √1/𝛽.
• 𝑈 is a selection vector that pins down 𝑦𝑡 as a particular linear combination of components of 𝑧𝑡.

The restriction on 𝜌(𝐴) prevents income from growing so fast that discounted geometric sums of some quadratic forms
to be described below become infinite.
Regarding preferences, we assume the quadratic utility function

𝑢(𝑐𝑡) = −(𝑐𝑡 − 𝛾)2

where 𝛾 is a bliss level of consumption.

Note: Along with this quadratic utility specification, we allow consumption to be negative. However, by choosing
parameters appropriately, we can make the probability that the model generates negative consumption paths over finite
time horizons as low as desired.

Finally, we impose the no Ponzi scheme condition

𝔼0 [
∞

∑
𝑡=0

𝛽𝑡𝑏2
𝑡 ] < ∞ (7.4)

This condition rules out an always-borrow scheme that would allow the consumer to enjoy bliss consumption forever.
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7.2.4 First-Order Conditions

First-order conditions for maximizing (7.1) subject to (7.2) are

𝔼𝑡[𝑢′(𝑐𝑡+1)] = 𝑢′(𝑐𝑡), 𝑡 = 0, 1, … (7.5)

These optimality conditions are also known as Euler equations.
If you’re not sure where they come from, you can find a proof sketch in the appendix.
With our quadratic preference specification, (7.5) has the striking implication that consumption follows a martingale:

𝔼𝑡[𝑐𝑡+1] = 𝑐𝑡 (7.6)

(In fact, quadratic preferences are necessary for this conclusion1.)
One way to interpret (7.6) is that consumption will change only when “new information” about permanent income is
revealed.
These ideas will be clarified below.

7.2.5 The Optimal Decision Rule

Now let’s deduce the optimal decision rule2.

Note: One way to solve the consumer’s problem is to apply dynamic programming as in this lecture. We do this later. But
first we use an alternative approach that is revealing and shows the work that dynamic programming does for us behind
the scenes.

In doing so, we need to combine
1. the optimality condition (7.6)
2. the period-by-period budget constraint (7.2), and
3. the boundary condition (7.4)

To accomplish this, observe first that (7.4) implies lim𝑡→∞ 𝛽 𝑡
2 𝑏𝑡+1 = 0.

Using this restriction on the debt path and solving (7.2) forward yields

𝑏𝑡 =
∞

∑
𝑗=0

𝛽𝑗(𝑦𝑡+𝑗 − 𝑐𝑡+𝑗) (7.7)

Take conditional expectations on both sides of (7.7) and use the martingale property of consumption and the law of
iterated expectations to deduce

𝑏𝑡 =
∞

∑
𝑗=0

𝛽𝑗𝔼𝑡[𝑦𝑡+𝑗] − 𝑐𝑡
1 − 𝛽 (7.8)

Expressed in terms of 𝑐𝑡 we get

𝑐𝑡 = (1 − 𝛽) [
∞

∑
𝑗=0

𝛽𝑗𝔼𝑡[𝑦𝑡+𝑗] − 𝑏𝑡] = 𝑟
1 + 𝑟 [

∞
∑
𝑗=0

𝛽𝑗𝔼𝑡[𝑦𝑡+𝑗] − 𝑏𝑡] (7.9)

1 A linear marginal utility is essential for deriving (7.6) from (7.5). Suppose instead that we had imposed the following more standard assumptions
on the utility function: 𝑢′(𝑐) > 0, 𝑢″(𝑐) < 0, 𝑢‴(𝑐) > 0 and required that 𝑐 ≥ 0. The Euler equation remains (7.5). But the fact that 𝑢‴ < 0
implies via Jensen’s inequality that 𝔼𝑡[𝑢′(𝑐𝑡+1)] > 𝑢′(𝔼𝑡[𝑐𝑡+1]). This inequality together with (7.5) implies that 𝔼𝑡[𝑐𝑡+1] > 𝑐𝑡 (consumption is said
to be a ‘submartingale’), so that consumption stochastically diverges to +∞. The consumer’s savings also diverge to +∞.

2 An optimal decision rule is a map from the current state into current actions—in this case, consumption.
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where the last equality uses (1 + 𝑟)𝛽 = 1.
These last two equations assert that consumption equals economic income

• financial wealth equals −𝑏𝑡

• non-financial wealth equals ∑∞
𝑗=0 𝛽𝑗𝔼𝑡[𝑦𝑡+𝑗]

• total wealth equals the sum of financial and non-financial wealth
• a marginal propensity to consume out of total wealth equals the interest factor 𝑟

1+𝑟

• economic income equals
– a constant marginal propensity to consume times the sum of non-financial wealth and financial wealth
– the amount the consumer can consume while leaving its wealth intact

Responding to the State

The state vector confronting the consumer at 𝑡 is [𝑏𝑡 𝑧𝑡].
Here

• 𝑧𝑡 is an exogenous component, unaffected by consumer behavior.
• 𝑏𝑡 is an endogenous component (since it depends on the decision rule).

Note that 𝑧𝑡 contains all variables useful for forecasting the consumer’s future endowment.
It is plausible that current decisions 𝑐𝑡 and 𝑏𝑡+1 should be expressible as functions of 𝑧𝑡 and 𝑏𝑡.
This is indeed the case.
In fact, from this discussion, we see that

∞
∑
𝑗=0

𝛽𝑗𝔼𝑡[𝑦𝑡+𝑗] = 𝔼𝑡 [
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗] = 𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡

Combining this with (7.9) gives

𝑐𝑡 = 𝑟
1 + 𝑟 [𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡 − 𝑏𝑡] (7.10)

Using this equality to eliminate 𝑐𝑡 in the budget constraint (7.2) gives

𝑏𝑡+1 = (1 + 𝑟)(𝑏𝑡 + 𝑐𝑡 − 𝑦𝑡)
= (1 + 𝑟)𝑏𝑡 + 𝑟[𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡 − 𝑏𝑡] − (1 + 𝑟)𝑈𝑧𝑡
= 𝑏𝑡 + 𝑈[𝑟(𝐼 − 𝛽𝐴)−1 − (1 + 𝑟)𝐼]𝑧𝑡
= 𝑏𝑡 + 𝑈(𝐼 − 𝛽𝐴)−1(𝐴 − 𝐼)𝑧𝑡

To get from the second last to the last expression in this chain of equalities is not trivial.
A key is to use the fact that (1 + 𝑟)𝛽 = 1 and (𝐼 − 𝛽𝐴)−1 = ∑∞

𝑗=0 𝛽𝑗𝐴𝑗.

We’ve now successfully written 𝑐𝑡 and 𝑏𝑡+1 as functions of 𝑏𝑡 and 𝑧𝑡.
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A State-Space Representation

We can summarize our dynamics in the form of a linear state-space system governing consumption, debt and income:

𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐶𝑤𝑡+1
𝑏𝑡+1 = 𝑏𝑡 + 𝑈[(𝐼 − 𝛽𝐴)−1(𝐴 − 𝐼)]𝑧𝑡

𝑦𝑡 = 𝑈𝑧𝑡
𝑐𝑡 = (1 − 𝛽)[𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡 − 𝑏𝑡]

(7.11)

To write this more succinctly, let

𝑥𝑡 = [𝑧𝑡
𝑏𝑡

] , ̃𝐴 = [ 𝐴 0
𝑈(𝐼 − 𝛽𝐴)−1(𝐴 − 𝐼) 1] , ̃𝐶 = [𝐶

0 ]

and

̃𝑈 = [ 𝑈 0
(1 − 𝛽)𝑈(𝐼 − 𝛽𝐴)−1 −(1 − 𝛽)] , ̃𝑦𝑡 = [𝑦𝑡

𝑐𝑡
]

Then we can express equation (7.11) as

𝑥𝑡+1 = ̃𝐴𝑥𝑡 + ̃𝐶𝑤𝑡+1

̃𝑦𝑡 = ̃𝑈𝑥𝑡
(7.12)

We can use the following formulas from linear state space models to compute population mean 𝜇𝑡 = 𝔼𝑥𝑡 and covariance
Σ𝑡 ∶= 𝔼[(𝑥𝑡 − 𝜇𝑡)(𝑥𝑡 − 𝜇𝑡)′]

𝜇𝑡+1 = ̃𝐴𝜇𝑡 with 𝜇0 given (7.13)

Σ𝑡+1 = ̃𝐴Σ𝑡 ̃𝐴′ + ̃𝐶 ̃𝐶′ with Σ0 given (7.14)
We can then compute the mean and covariance of ̃𝑦𝑡 from

𝜇𝑦,𝑡 = ̃𝑈𝜇𝑡

Σ𝑦,𝑡 = ̃𝑈Σ𝑡 ̃𝑈 ′
(7.15)

A Simple Example with IID Income

To gain some preliminary intuition on the implications of (7.11), let’s look at a highly stylized example where income is
just IID.
(Later examples will investigate more realistic income streams.)
In particular, let {𝑤𝑡}∞

𝑡=1 be IID and scalar standard normal, and let

𝑧𝑡 = [𝑧1
𝑡
1 ] , 𝐴 = [0 0

0 1] , 𝑈 = [1 𝜇] , 𝐶 = [𝜎
0]

Finally, let 𝑏0 = 𝑧1
0 = 0.

Under these assumptions, we have 𝑦𝑡 = 𝜇 + 𝜎𝑤𝑡 ∼ 𝑁(𝜇, 𝜎2).
Further, if you work through the state space representation, you will see that

𝑏𝑡 = −𝜎
𝑡−1
∑
𝑗=1

𝑤𝑗

𝑐𝑡 = 𝜇 + (1 − 𝛽)𝜎
𝑡

∑
𝑗=1

𝑤𝑗
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Thus, income is IID and debt and consumption are both Gaussian random walks.
Defining assets as −𝑏𝑡, we see that assets are just the cumulative sum of unanticipated incomes prior to the present date.
The next figure shows a typical realization with 𝑟 = 0.05, 𝜇 = 1, and 𝜎 = 0.15

r = 0.05
β = 1 / (1 + r)
σ = 0.15
μ = 1
T = 60

@njit
def time_path(T):

w = np.random.randn(T+1) # w_0, w_1, ..., w_T
w[0] = 0
b = np.zeros(T+1)
for t in range(1, T+1):

b[t] = w[1:t].sum()
b = -σ * b
c = μ + (1 - β) * (σ * w - b)
return w, b, c

w, b, c = time_path(T)

fig, ax = plt.subplots(figsize=(10, 6))

ax.plot(μ + σ * w, 'g-', label="Non-financial income")
ax.plot(c, 'k-', label="Consumption")
ax.plot( b, 'b-', label="Debt")
ax.legend(ncol=3, mode='expand', bbox_to_anchor=(0., 1.02, 1., .102))
ax.grid()
ax.set_xlabel('Time')

plt.show()
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Observe that consumption is considerably smoother than income.
The figure below shows the consumption paths of 250 consumers with independent income streams

fig, ax = plt.subplots(figsize=(10, 6))

b_sum = np.zeros(T+1)
for i in range(250):

w, b, c = time_path(T) # Generate new time path
rcolor = random.choice(('c', 'g', 'b', 'k'))
ax.plot(c, color=rcolor, lw=0.8, alpha=0.7)

ax.grid()
ax.set(xlabel='Time', ylabel='Consumption')

plt.show()
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7.3 Alternative Representations

In this section, we shed more light on the evolution of savings, debt and consumption by representing their dynamics in
several different ways.

7.3.1 Hall’s Representation

Hall [Hall, 1978] suggested an insightful way to summarize the implications of LQ permanent income theory.
First, to represent the solution for 𝑏𝑡, shift (7.9) forward one period and eliminate 𝑏𝑡+1 by using (7.2) to obtain

𝑐𝑡+1 = (1 − 𝛽)
∞

∑
𝑗=0

𝛽𝑗𝔼𝑡+1[𝑦𝑡+𝑗+1] − (1 − 𝛽) [𝛽−1(𝑐𝑡 + 𝑏𝑡 − 𝑦𝑡)]

If we add and subtract 𝛽−1(1−𝛽) ∑∞
𝑗=0 𝛽𝑗𝔼𝑡𝑦𝑡+𝑗 from the right side of the preceding equation and rearrange, we obtain

𝑐𝑡+1 − 𝑐𝑡 = (1 − 𝛽)
∞

∑
𝑗=0

𝛽𝑗 {𝔼𝑡+1[𝑦𝑡+𝑗+1] − 𝔼𝑡[𝑦𝑡+𝑗+1]} (7.16)

The right side is the time 𝑡 + 1 innovation to the expected present value of the endowment process {𝑦𝑡}.
We can represent the optimal decision rule for (𝑐𝑡, 𝑏𝑡+1) in the form of (7.16) and (7.8), which we repeat:

𝑏𝑡 =
∞

∑
𝑗=0

𝛽𝑗𝔼𝑡[𝑦𝑡+𝑗] − 1
1 − 𝛽 𝑐𝑡 (7.17)

Equation (7.17) asserts that the consumer’s debt due at 𝑡 equals the expected present value of its endowment minus the
expected present value of its consumption stream.
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A high debt thus indicates a large expected present value of surpluses 𝑦𝑡 − 𝑐𝑡.
Recalling again our discussion on forecasting geometric sums, we have

𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗 = 𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡

𝔼𝑡+1
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗+1 = 𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡+1

𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗+1 = 𝑈(𝐼 − 𝛽𝐴)−1𝐴𝑧𝑡

Using these formulas together with (7.3) and substituting into (7.16) and (7.17) gives the following representation for the
consumer’s optimum decision rule:

𝑐𝑡+1 = 𝑐𝑡 + (1 − 𝛽)𝑈(𝐼 − 𝛽𝐴)−1𝐶𝑤𝑡+1

𝑏𝑡 = 𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡 − 1
1 − 𝛽 𝑐𝑡

𝑦𝑡 = 𝑈𝑧𝑡
𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐶𝑤𝑡+1

(7.18)

Representation (7.18) makes clear that
• The state can be taken as (𝑐𝑡, 𝑧𝑡).

– The endogenous part is 𝑐𝑡 and the exogenous part is 𝑧𝑡.
– Debt 𝑏𝑡 has disappeared as a component of the state because it is encoded in 𝑐𝑡.

• Consumption is a random walk with innovation (1 − 𝛽)𝑈(𝐼 − 𝛽𝐴)−1𝐶𝑤𝑡+1.
– This is a more explicit representation of the martingale result in (7.6).

7.3.2 Cointegration

Representation (7.18) reveals that the joint process {𝑐𝑡, 𝑏𝑡} possesses the property that Engle and Granger [Engle and
Granger, 1987] called cointegration.
Cointegration is a tool that allows us to apply powerful results from the theory of stationary stochastic processes to (certain
transformations of) nonstationary models.
To apply cointegration in the present context, suppose that 𝑧𝑡 is asymptotically stationary3.
Despite this, both 𝑐𝑡 and 𝑏𝑡 will be non-stationary because they have unit roots (see (7.11) for 𝑏𝑡).
Nevertheless, there is a linear combination of 𝑐𝑡, 𝑏𝑡 that is asymptotically stationary.
In particular, from the second equality in (7.18) we have

(1 − 𝛽)𝑏𝑡 + 𝑐𝑡 = (1 − 𝛽)𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡 (7.19)

Hence the linear combination (1 − 𝛽)𝑏𝑡 + 𝑐𝑡 is asymptotically stationary.
Accordingly, Granger and Engle would call [(1 − 𝛽) 1] a cointegrating vector for the state.

When applied to the nonstationary vector process [𝑏𝑡 𝑐𝑡]
′, it yields a process that is asymptotically stationary.

3 This would be the case if, for example, the spectral radius of 𝐴 is strictly less than one.
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Equation (7.19) can be rearranged to take the form

(1 − 𝛽)𝑏𝑡 + 𝑐𝑡 = (1 − 𝛽)𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗 (7.20)

Equation (7.20) asserts that the cointegrating residual on the left side equals the conditional expectation of the geometric
sum of future incomes on the right4.

7.3.3 Cross-Sectional Implications

Consider again (7.18), this time in light of our discussion of distribution dynamics in the lecture on linear systems.
The dynamics of 𝑐𝑡 are given by

𝑐𝑡+1 = 𝑐𝑡 + (1 − 𝛽)𝑈(𝐼 − 𝛽𝐴)−1𝐶𝑤𝑡+1 (7.21)

or

𝑐𝑡 = 𝑐0 +
𝑡

∑
𝑗=1

𝑤̂𝑗 for 𝑤̂𝑡+1 ∶= (1 − 𝛽)𝑈(𝐼 − 𝛽𝐴)−1𝐶𝑤𝑡+1

The unit root affecting 𝑐𝑡 causes the time 𝑡 variance of 𝑐𝑡 to grow linearly with 𝑡.
In particular, since {𝑤̂𝑡} is IID, we have

Var[𝑐𝑡] = Var[𝑐0] + 𝑡 𝜎̂2 (7.22)

where

𝜎̂2 ∶= (1 − 𝛽)2𝑈(𝐼 − 𝛽𝐴)−1𝐶𝐶′(𝐼 − 𝛽𝐴′)−1𝑈 ′

When 𝜎̂ > 0, {𝑐𝑡} has no asymptotic distribution.
Let’s consider what this means for a cross-section of ex-ante identical consumers born at time 0.
Let the distribution of 𝑐0 represent the cross-section of initial consumption values.
Equation (7.22) tells us that the variance of 𝑐𝑡 increases over time at a rate proportional to 𝑡.
A number of different studies have investigated this prediction and found some support for it (see, e.g., [Deaton and
Paxson, 1994], [Storesletten et al., 2004]).

7.3.4 Impulse Response Functions

Impulse response functions measure responses to various impulses (i.e., temporary shocks).
The impulse response function of {𝑐𝑡} to the innovation {𝑤𝑡} is a box.
In particular, the response of 𝑐𝑡+𝑗 to a unit increase in the innovation 𝑤𝑡+1 is (1 − 𝛽)𝑈(𝐼 − 𝛽𝐴)−1𝐶 for all 𝑗 ≥ 1.

4 See [John Y. Campbell, 1988], [Lettau and Ludvigson, 2001], [Lettau and Ludvigson, 2004] for interesting applications of related ideas.
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7.3.5 Moving Average Representation

It’s useful to express the innovation to the expected present value of the endowment process in terms of a moving average
representation for income 𝑦𝑡.
The endowment process defined by (7.3) has the moving average representation

𝑦𝑡+1 = 𝑑(𝐿)𝑤𝑡+1 (7.23)

where
• 𝑑(𝐿) = ∑∞

𝑗=0 𝑑𝑗𝐿𝑗 for some sequence 𝑑𝑗, where 𝐿 is the lag operator5

• at time 𝑡, the consumer has an information set6 𝑤𝑡 = [𝑤𝑡, 𝑤𝑡−1, …]
Notice that

𝑦𝑡+𝑗 − 𝔼𝑡[𝑦𝑡+𝑗] = 𝑑0𝑤𝑡+𝑗 + 𝑑1𝑤𝑡+𝑗−1 + ⋯ + 𝑑𝑗−1𝑤𝑡+1

It follows that

𝔼𝑡+1[𝑦𝑡+𝑗] − 𝔼𝑡[𝑦𝑡+𝑗] = 𝑑𝑗−1𝑤𝑡+1 (7.24)

Using (7.24) in (7.16) gives

𝑐𝑡+1 − 𝑐𝑡 = (1 − 𝛽)𝑑(𝛽)𝑤𝑡+1 (7.25)

The object 𝑑(𝛽) is the present value of the moving average coefficients in the representation for the endowment process
𝑦𝑡.

7.4 Two Classic Examples

We illustrate some of the preceding ideas with two examples.
In both examples, the endowment follows the process 𝑦𝑡 = 𝑧1𝑡 + 𝑧2𝑡 where

[𝑧1𝑡+1
𝑧2𝑡+1

] = [1 0
0 0] [𝑧1𝑡

𝑧2𝑡
] + [𝜎1 0

0 𝜎2
] [𝑤1𝑡+1

𝑤2𝑡+1
]

Here
• 𝑤𝑡+1 is an IID 2 × 1 process distributed as 𝑁(0, 𝐼).
• 𝑧1𝑡 is a permanent component of 𝑦𝑡.
• 𝑧2𝑡 is a purely transitory component of 𝑦𝑡.

7.4.1 Example 1

Assume as before that the consumer observes the state 𝑧𝑡 at time 𝑡.
In view of (7.18) we have

𝑐𝑡+1 − 𝑐𝑡 = 𝜎1𝑤1𝑡+1 + (1 − 𝛽)𝜎2𝑤2𝑡+1 (7.26)

Formula (7.26) shows how an increment 𝜎1𝑤1𝑡+1 to the permanent component of income 𝑧1𝑡+1 leads to
5 Representation (7.3) implies that 𝑑(𝐿) = 𝑈(𝐼 − 𝐴𝐿)−1𝐶.
6 A moving average representation for a process 𝑦𝑡 is said to be fundamental if the linear space spanned by 𝑦𝑡 is equal to the linear space spanned

by 𝑤𝑡. A time-invariant innovations representation, attained via the Kalman filter, is by construction fundamental.
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• a permanent one-for-one increase in consumption and
• no increase in savings −𝑏𝑡+1

But the purely transitory component of income 𝜎2𝑤2𝑡+1 leads to a permanent increment in consumption by a fraction
1 − 𝛽 of transitory income.
The remaining fraction 𝛽 is saved, leading to a permanent increment in −𝑏𝑡+1.
Application of the formula for debt in (7.11) to this example shows that

𝑏𝑡+1 − 𝑏𝑡 = −𝑧2𝑡 = −𝜎2𝑤2𝑡 (7.27)

This confirms that none of 𝜎1𝑤1𝑡 is saved, while all of 𝜎2𝑤2𝑡 is saved.
The next figure displays impulse-response functions that illustrates these very different reactions to transitory and perma-
nent income shocks.

r = 0.05
β = 1 / (1 + r)
S = 5 # Impulse date
σ1 = σ2 = 0.15

@njit
def time_path(T, permanent=False):

"Time path of consumption and debt given shock sequence"
w1 = np.zeros(T+1)
w2 = np.zeros(T+1)
b = np.zeros(T+1)
c = np.zeros(T+1)
if permanent:

w1[S+1] = 1.0
else:

w2[S+1] = 1.0
for t in range(1, T):

b[t+1] = b[t] - σ2 * w2[t]
c[t+1] = c[t] + σ1 * w1[t+1] + (1 - β) * σ2 * w2[t+1]

return b, c

fig, axes = plt.subplots(2, 1, figsize=(10, 8))
titles = ['permanent', 'transitory']

L = 0.175

for ax, truefalse, title in zip(axes, (True, False), titles):
b, c = time_path(T=20, permanent=truefalse)
ax.set_title(f'Impulse reponse: {title} income shock')
ax.plot(c, 'g-', label="consumption")
ax.plot(b, 'b-', label="debt")
ax.plot((S, S), (-L, L), 'k-', lw=0.5)
ax.grid(alpha=0.5)
ax.set(xlabel=r'Time', ylim=(-L, L))

axes[0].legend(loc='lower right')

plt.tight_layout()
plt.show()
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Notice how the permanent income shock provokes no change in assets −𝑏𝑡+1 and an immediate permanent change in
consumption equal to the permanent increment in non-financial income.
In contrast, notice how most of a transitory income shock is saved and only a small amount is saved.
The box-like impulse responses of consumption to both types of shock reflect the random walk property of the optimal
consumption decision.

7.4.2 Example 2

Assume now that at time 𝑡 the consumer observes 𝑦𝑡, and its history up to 𝑡, but not 𝑧𝑡.
Under this assumption, it is appropriate to use an innovation representation to form 𝐴, 𝐶, 𝑈 in (7.18).
The discussion in sections 2.9.1 and 2.11.3 of [Ljungqvist and Sargent, 2018] shows that the pertinent state space repre-
sentation for 𝑦𝑡 is

[𝑦𝑡+1
𝑎𝑡+1

] = [1 −(1 − 𝐾)
0 0 ] [𝑦𝑡

𝑎𝑡
] + [1

1] 𝑎𝑡+1

𝑦𝑡 = [1 0] [𝑦𝑡
𝑎𝑡

]

where
• 𝐾 ∶= the stationary Kalman gain
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• 𝑎𝑡 ∶= 𝑦𝑡 − 𝐸[𝑦𝑡 | 𝑦𝑡−1, … , 𝑦0]
In the same discussion in [Ljungqvist and Sargent, 2018] it is shown that 𝐾 ∈ [0, 1] and that 𝐾 increases as 𝜎1/𝜎2 does.
In other words, 𝐾 increases as the ratio of the standard deviation of the permanent shock to that of the transitory shock
increases.
Please see first look at the Kalman filter.
Applying formulas (7.18) implies

𝑐𝑡+1 − 𝑐𝑡 = [1 − 𝛽(1 − 𝐾)]𝑎𝑡+1 (7.28)

where the endowment process can now be represented in terms of the univariate innovation to 𝑦𝑡 as

𝑦𝑡+1 − 𝑦𝑡 = 𝑎𝑡+1 − (1 − 𝐾)𝑎𝑡 (7.29)

Equation (7.29) indicates that the consumer regards
• fraction 𝐾 of an innovation 𝑎𝑡+1 to 𝑦𝑡+1 as permanent
• fraction 1 − 𝐾 as purely transitory

The consumer permanently increases his consumption by the full amount of his estimate of the permanent part of 𝑎𝑡+1,
but by only (1 − 𝛽) times his estimate of the purely transitory part of 𝑎𝑡+1.
Therefore, in total, he permanently increments his consumption by a fraction 𝐾 + (1 − 𝛽)(1 − 𝐾) = 1 − 𝛽(1 − 𝐾) of
𝑎𝑡+1.
He saves the remaining fraction 𝛽(1 − 𝐾).
According to equation (7.29), the first difference of income is a first-order moving average.
Equation (7.28) asserts that the first difference of consumption is IID.
Application of formula to this example shows that

𝑏𝑡+1 − 𝑏𝑡 = (𝐾 − 1)𝑎𝑡 (7.30)

This indicates how the fraction 𝐾 of the innovation to 𝑦𝑡 that is regarded as permanent influences the fraction of the
innovation that is saved.

7.5 Further Reading

The model described above significantly changed how economists think about consumption.
While Hall’s model does a remarkably good job as a first approximation to consumption data, it’s widely believed that it
doesn’t capture important aspects of some consumption/savings data.
For example, liquidity constraints and precautionary savings appear to be present sometimes.
Further discussion can be found in, e.g., [Hall and Mishkin, 1982], [Parker, 1999], [Deaton, 1991], [Carroll, 2001].
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7.6 Appendix: The Euler Equation

Where does the first-order condition (7.5) come from?
Here we’ll give a proof for the two-period case, which is representative of the general argument.
The finite horizon equivalent of the no-Ponzi condition is that the agent cannot end her life in debt, so 𝑏2 = 0.
From the budget constraint (7.2) we then have

𝑐0 = 𝑏1
1 + 𝑟 − 𝑏0 + 𝑦0 and 𝑐1 = 𝑦1 − 𝑏1

Here 𝑏0 and 𝑦0 are given constants.
Substituting these constraints into our two-period objective 𝑢(𝑐0) + 𝛽𝔼0[𝑢(𝑐1)] gives

max
𝑏1

{𝑢 (𝑏1
𝑅 − 𝑏0 + 𝑦0) + 𝛽 𝔼0[𝑢(𝑦1 − 𝑏1)]}

You will be able to verify that the first-order condition is

𝑢′(𝑐0) = 𝛽𝑅 𝔼0[𝑢′(𝑐1)]

Using 𝛽𝑅 = 1 gives (7.5) in the two-period case.
The proof for the general case is similar.
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PERMANENT INCOME II: LQ TECHNIQUES

Contents

• Permanent Income II: LQ Techniques

– Overview

– Setup

– The LQ Approach

– Implementation

– Two Example Economies

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

8.1 Overview

This lecture continues our analysis of the linear-quadratic (LQ) permanent income model of savings and consumption.
As we saw in our previous lecture on this topic, Robert Hall [Hall, 1978] used the LQ permanent income model to restrict
and interpret intertemporal comovements of nondurable consumption, nonfinancial income, and financial wealth.
For example, we saw how the model asserts that for any covariance stationary process for nonfinancial income

• consumption is a random walk
• financial wealth has a unit root and is cointegrated with consumption

Other applications use the same LQ framework.
For example, a model isomorphic to the LQ permanent income model has been used by Robert Barro [Barro, 1979] to
interpret intertemporal comovements of a government’s tax collections, its expenditures net of debt service, and its public
debt.
This isomorphism means that in analyzing the LQ permanent income model, we are in effect also analyzing the Barro tax
smoothing model.
It is just a matter of appropriately relabeling the variables in Hall’s model.
In this lecture, we’ll

• show how the solution to the LQ permanent income model can be obtained using LQ control methods.
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• represent the model as a linear state space system as in this lecture.
• applyQuantEcon’s LinearStateSpace class to characterize statistical features of the consumer’s optimal consumption
and borrowing plans.

We’ll then use these characterizations to construct a simple model of cross-section wealth and consumption dynamics in
the spirit of Truman Bewley [Bewley, 1986].
(Later we’ll study other Bewley models—see this lecture.)
The model will prove useful for illustrating concepts such as

• stationarity
• ergodicity
• ensemble moments and cross-section observations

Let’s start with some imports:

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import quantecon as qe
import numpy as np
import scipy.linalg as la

8.2 Setup

Let’s recall the basic features of the model discussed in the permanent income model.
Consumer preferences are ordered by

𝐸0
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡) (8.1)

where 𝑢(𝑐) = −(𝑐 − 𝛾)2.
The consumer maximizes (8.1) by choosing a consumption, borrowing plan {𝑐𝑡, 𝑏𝑡+1}∞

𝑡=0 subject to the sequence of
budget constraints

𝑐𝑡 + 𝑏𝑡 = 1
1 + 𝑟𝑏𝑡+1 + 𝑦𝑡, 𝑡 ≥ 0 (8.2)

and the no-Ponzi condition

𝐸0
∞

∑
𝑡=0

𝛽𝑡𝑏2
𝑡 < ∞ (8.3)

The interpretation of all variables and parameters are the same as in the previous lecture.
We continue to assume that (1 + 𝑟)𝛽 = 1.
The dynamics of {𝑦𝑡} again follow the linear state space model

𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝑈𝑧𝑡

(8.4)

The restrictions on the shock process and parameters are the same as in our previous lecture.
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8.2.1 Digression on a Useful Isomorphism

The LQ permanent income model of consumption is mathematically isomorphic with a version of Barro’s [Barro, 1979]
model of tax smoothing.
In the LQ permanent income model

• the household faces an exogenous process of nonfinancial income
• the household wants to smooth consumption across states and time

In the Barro tax smoothing model
• a government faces an exogenous sequence of government purchases (net of interest payments on its debt)
• a government wants to smooth tax collections across states and time

If we set
• 𝑇𝑡, total tax collections in Barro’s model to consumption 𝑐𝑡 in the LQ permanent income model.
• 𝐺𝑡, exogenous government expenditures in Barro’s model to nonfinancial income 𝑦𝑡 in the permanent income
model.

• 𝐵𝑡, government risk-free one-period assets falling due in Barro’s model to risk-free one-period consumer debt 𝑏𝑡
falling due in the LQ permanent income model.

• 𝑅, the gross rate of return on risk-free one-period government debt in Barro’s model to the gross rate of return
1 + 𝑟 on financial assets in the permanent income model of consumption.

then the two models are mathematically equivalent.
All characterizations of a {𝑐𝑡, 𝑦𝑡, 𝑏𝑡} in the LQ permanent income model automatically apply to a {𝑇𝑡, 𝐺𝑡, 𝐵𝑡} process
in the Barro model of tax smoothing.
See consumption and tax smoothing models for further exploitation of an isomorphism between consumption and tax
smoothing models.

8.2.2 A Specification of the Nonfinancial Income Process

For the purposes of this lecture, let’s assume {𝑦𝑡} is a second-order univariate autoregressive process:

𝑦𝑡+1 = 𝛼 + 𝜌1𝑦𝑡 + 𝜌2𝑦𝑡−1 + 𝜎𝑤𝑡+1

We can map this into the linear state space framework in (8.4), as discussed in our lecture on linear models.
To do so we take

𝑧𝑡 = ⎡⎢
⎣

1
𝑦𝑡

𝑦𝑡−1

⎤⎥
⎦

, 𝐴 = ⎡⎢
⎣

1 0 0
𝛼 𝜌1 𝜌2
0 1 0

⎤⎥
⎦

, 𝐶 = ⎡⎢
⎣

0
𝜎
0
⎤⎥
⎦

, and 𝑈 = [0 1 0]
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8.3 The LQ Approach

Previously we solved the permanent income model by solving a system of linear expectational difference equations subject
to two boundary conditions.
Here we solve the same model using LQ methods based on dynamic programming.
After confirming that answers produced by the two methods agree, we apply QuantEcon’s LinearStateSpace class to
illustrate features of the model.
Why solve a model in two distinct ways?
Because by doing so we gather insights about the structure of the model.
Our earlier approach based on solving a system of expectational difference equations brought to the fore the role of the
consumer’s expectations about future nonfinancial income.
On the other hand, formulating the model in terms of an LQ dynamic programming problem reminds us that

• finding the state (of a dynamic programming problem) is an art, and
• iterations on a Bellman equation implicitly jointly solve both a forecasting problem and a control problem

8.3.1 The LQ Problem

Recall from our lecture on LQ theory that the optimal linear regulator problem is to choose a decision rule for 𝑢𝑡 to
minimize

𝔼
∞

∑
𝑡=0

𝛽𝑡{𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡},

subject to 𝑥0 given and the law of motion

𝑥𝑡+1 = ̃𝐴𝑥𝑡 + 𝐵̃𝑢𝑡 + ̃𝐶𝑤𝑡+1, 𝑡 ≥ 0, (8.5)

where 𝑤𝑡+1 is IID with mean vector zero and 𝔼𝑤𝑡𝑤′
𝑡 = 𝐼 .

The tildes in ̃𝐴, 𝐵̃, ̃𝐶 are to avoid clashing with notation in (8.4).
The value function for this problem is 𝑣(𝑥) = −𝑥′𝑃𝑥 − 𝑑, where

• 𝑃 is the unique positive semidefinite solution of the corresponding matrix Riccati equation.

• The scalar 𝑑 is given by 𝑑 = 𝛽(1 − 𝛽)−1trace(𝑃 ̃𝐶 ̃𝐶′).
The optimal policy is 𝑢𝑡 = −𝐹𝑥𝑡, where 𝐹 ∶= 𝛽(𝑄 + 𝛽𝐵̃′𝑃 𝐵̃)−1𝐵̃′𝑃 ̃𝐴.
Under an optimal decision rule 𝐹 , the state vector 𝑥𝑡 evolves according to 𝑥𝑡+1 = ( ̃𝐴 − 𝐵̃𝐹)𝑥𝑡 + ̃𝐶𝑤𝑡+1.

8.3.2 Mapping into the LQ Framework

To map into the LQ framework, we’ll use

𝑥𝑡 ∶= [𝑧𝑡
𝑏𝑡

] =
⎡
⎢⎢
⎣

1
𝑦𝑡

𝑦𝑡−1
𝑏𝑡

⎤
⎥⎥
⎦

as the state vector and 𝑢𝑡 ∶= 𝑐𝑡 − 𝛾 as the control.
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With this notation and 𝑈𝛾 ∶= [𝛾 0 0], we can write the state dynamics as in (8.5) when

̃𝐴 ∶= [ 𝐴 0
(1 + 𝑟)(𝑈𝛾 − 𝑈) 1 + 𝑟] 𝐵̃ ∶= [ 0

1 + 𝑟] and ̃𝐶 ∶= [𝐶
0 ] 𝑤𝑡+1

Please confirm for yourself that, with these definitions, the LQ dynamics (8.5) match the dynamics of 𝑧𝑡 and 𝑏𝑡 described
above.
To map utility into the quadratic form 𝑥′

𝑡𝑅𝑥𝑡 + 𝑢′
𝑡𝑄𝑢𝑡 we can set

• 𝑄 ∶= 1 (remember that we are minimizing) and
• 𝑅 ∶= a 4 × 4 matrix of zeros

However, there is one problem remaining.
We have no direct way to capture the non-recursive restriction (8.3) on the debt sequence {𝑏𝑡} from within the LQ
framework.
To try to enforce it, we’re going to use a trick: put a small penalty on 𝑏2

𝑡 in the criterion function.
In the present setting, this means adding a small entry 𝜖 > 0 in the (4, 4) position of 𝑅.
That will induce a (hopefully) small approximation error in the decision rule.
We’ll check whether it really is small numerically soon.

8.4 Implementation

Let’s write some code to solve the model.
One comment before we start is that the bliss level of consumption 𝛾 in the utility function has no effect on the optimal
decision rule.
We saw this in the previous lecture permanent income.
The reason is that it drops out of the Euler equation for consumption.
In what follows we set it equal to unity.

8.4.1 The Exogenous Nonfinancial Income Process

First, we create the objects for the optimal linear regulator

# Set parameters
α, β, ρ1, ρ2, σ = 10.0, 0.95, 0.9, 0.0, 1.0

R = 1 / β
A = np.array([[1., 0., 0.],

[α, ρ1, ρ2],
[0., 1., 0.]])

C = np.array([[0.], [σ], [0.]])
G = np.array([[0., 1., 0.]])

# Form LinearStateSpace system and pull off steady state moments
μ_z0 = np.array([[1.0], [0.0], [0.0]])
Σ_z0 = np.zeros((3, 3))
Lz = qe.LinearStateSpace(A, C, G, mu_0=μ_z0, Sigma_0=Σ_z0)

(continues on next page)
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(continued from previous page)

μ_z, μ_y, Σ_z, Σ_y, Σ_yx = Lz.stationary_distributions()

# Mean vector of state for the savings problem
mxo = np.vstack([μ_z, 0.0])

# Create stationary covariance matrix of x -- start everyone off at b=0
a1 = np.zeros((3, 1))
aa = np.hstack([Σ_z, a1])
bb = np.zeros((1, 4))
sxo = np.vstack([aa, bb])

# These choices will initialize the state vector of an individual at zero
# debt and the ergodic distribution of the endowment process. Use these to
# create the Bewley economy.
mxbewley = mxo
sxbewley = sxo

The next step is to create the matrices for the LQ system

A12 = np.zeros((3,1))
ALQ_l = np.hstack([A, A12])
ALQ_r = np.array([[0, -R, 0, R]])
ALQ = np.vstack([ALQ_l, ALQ_r])

RLQ = np.array([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 1e-9]])

QLQ = np.array([1.0])
BLQ = np.array([0., 0., 0., R]).reshape(4,1)
CLQ = np.array([0., σ, 0., 0.]).reshape(4,1)
β_LQ = β

Let’s print these out and have a look at them

print(f"A = \n {ALQ}")
print(f"B = \n {BLQ}")
print(f"R = \n {RLQ}")
print(f"Q = \n {QLQ}")

A =
[[ 1. 0. 0. 0. ]
[10. 0.9 0. 0. ]
[ 0. 1. 0. 0. ]
[ 0. -1.05263158 0. 1.05263158]]

B =
[[0. ]
[0. ]
[0. ]
[1.05263158]]

R =
[[0.e+00 0.e+00 0.e+00 0.e+00]
[0.e+00 0.e+00 0.e+00 0.e+00]
[0.e+00 0.e+00 0.e+00 0.e+00]

(continues on next page)
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(continued from previous page)

[0.e+00 0.e+00 0.e+00 1.e-09]]
Q =
[1.]

Now create the appropriate instance of an LQ model

lqpi = qe.LQ(QLQ, RLQ, ALQ, BLQ, C=CLQ, beta=β_LQ)

We’ll save the implied optimal policy function soon compare them with what we get by employing an alternative solution
method

P, F, d = lqpi.stationary_values() # Compute value function and decision rule
ABF = ALQ - BLQ @ F # Form closed loop system

8.4.2 Comparison with the Difference Equation Approach

In our first lecture on the infinite horizon permanent income problem we used a different solution method.
The method was based around

• deducing the Euler equations that are the first-order conditions with respect to consumption and savings.
• using the budget constraints and boundary condition to complete a system of expectational linear difference equa-
tions.

• solving those equations to obtain the solution.
Expressed in state space notation, the solution took the form

𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐶𝑤𝑡+1
𝑏𝑡+1 = 𝑏𝑡 + 𝑈[(𝐼 − 𝛽𝐴)−1(𝐴 − 𝐼)]𝑧𝑡

𝑦𝑡 = 𝑈𝑧𝑡
𝑐𝑡 = (1 − 𝛽)[𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡 − 𝑏𝑡]

Now we’ll apply the formulas in this system

# Use the above formulas to create the optimal policies for b_{t+1} and c_t
b_pol = G @ la.inv(np.eye(3, 3) - β * A) @ (A - np.eye(3, 3))
c_pol = (1 - β) * G @ la.inv(np.eye(3, 3) - β * A)

# Create the A matrix for a LinearStateSpace instance
A_LSS1 = np.vstack([A, b_pol])
A_LSS2 = np.eye(4, 1, -3)
A_LSS = np.hstack([A_LSS1, A_LSS2])

# Create the C matrix for LSS methods
C_LSS = np.vstack([C, np.zeros(1)])

# Create the G matrix for LSS methods
G_LSS1 = np.vstack([G, c_pol])
G_LSS2 = np.vstack([np.zeros(1), -(1 - β)])
G_LSS = np.hstack([G_LSS1, G_LSS2])

# Use the following values to start everyone off at b=0, initial incomes zero

(continues on next page)
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μ_0 = np.array([1., 0., 0., 0.])
Σ_0 = np.zeros((4, 4))

A_LSS calculated as we have here should equal ABF calculated above using the LQ model

ABF - A_LSS

array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00],

[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00],

[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00],

[-9.51248181e-06, 9.51247878e-08, 0.00000000e+00,
-1.99999901e-08]])

Now compare pertinent elements of c_pol and F

print(c_pol, "\n", -F)

[[65.51724138 0.34482759 0. ]]
[[ 6.55172323e+01 3.44827677e-01 -0.00000000e+00 -5.00000190e-02]]

We have verified that the two methods give the same solution.
Now let’s create instances of the LinearStateSpace class and use it to do some interesting experiments.
To do this, we’ll use the outcomes from our second method.

8.5 Two Example Economies

In the spirit of Bewley models [Bewley, 1986], we’ll generate panels of consumers.
The examples differ only in the initial states with which we endow the consumers.
All other parameter values are kept the same in the two examples

• In the first example, all consumers begin with zero nonfinancial income and zero debt.
– The consumers are thus ex-ante identical.

• In the second example, while all begin with zero debt, we draw their initial income levels from the invariant distri-
bution of financial income.

– Consumers are ex-ante heterogeneous.
In the first example, consumers’ nonfinancial income paths display pronounced transients early in the sample

• these will affect outcomes in striking ways
Those transient effects will not be present in the second example.
We use methods affiliated with the LinearStateSpace class to simulate the model.
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8.5.1 First Set of Initial Conditions

We generate 25 paths of the exogenous non-financial income process and the associated optimal consumption and debt
paths.
In the first set of graphs, darker lines depict a particular sample path, while the lighter lines describe 24 other paths.
A second graph plots a collection of simulations against the population distribution that we extract from the Lin-
earStateSpace instance LSS.
Comparing sample paths with population distributions at each date 𝑡 is a useful exercise—see our discussion of the laws
of large numbers

lss = qe.LinearStateSpace(A_LSS, C_LSS, G_LSS, mu_0=μ_0, Sigma_0=Σ_0)

8.5.2 Population and Sample Panels

In the code below, we use the LinearStateSpace class to
• compute and plot population quantiles of the distributions of consumption and debt for a population of consumers.
• simulate a group of 25 consumers and plot sample paths on the same graph as the population distribution.

def income_consumption_debt_series(A, C, G, μ_0, Σ_0, T=150, npaths=25):
"""
This function takes initial conditions (μ_0, Σ_0) and uses the
LinearStateSpace class from QuantEcon to simulate an economy
npaths times for T periods. It then uses that information to
generate some graphs related to the discussion below.
"""
lss = qe.LinearStateSpace(A, C, G, mu_0=μ_0, Sigma_0=Σ_0)

# Simulation/Moment Parameters
moment_generator = lss.moment_sequence()

# Simulate various paths
bsim = np.empty((npaths, T))
csim = np.empty((npaths, T))
ysim = np.empty((npaths, T))

for i in range(npaths):
sims = lss.simulate(T)
bsim[i, :] = sims[0][-1, :]
csim[i, :] = sims[1][1, :]
ysim[i, :] = sims[1][0, :]

# Get the moments
cons_mean = np.empty(T)
cons_var = np.empty(T)
debt_mean = np.empty(T)
debt_var = np.empty(T)
for t in range(T):

μ_x, μ_y, Σ_x, Σ_y = next(moment_generator)
cons_mean[t], cons_var[t] = μ_y[1], Σ_y[1, 1]
debt_mean[t], debt_var[t] = μ_x[3], Σ_x[3, 3]

return bsim, csim, ysim, cons_mean, cons_var, debt_mean, debt_var

(continues on next page)
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(continued from previous page)

def consumption_income_debt_figure(bsim, csim, ysim):

# Get T
T = bsim.shape[1]

# Create the first figure
fig, ax = plt.subplots(2, 1, figsize=(10, 8))
xvals = np.arange(T)

# Plot consumption and income
ax[0].plot(csim[0, :], label="c", color="b")
ax[0].plot(ysim[0, :], label="y", color="g")
ax[0].plot(csim.T, alpha=.1, color="b")
ax[0].plot(ysim.T, alpha=.1, color="g")
ax[0].legend(loc=4)
ax[0].set(title="Nonfinancial Income, Consumption, and Debt",

xlabel="t", ylabel="y and c")

# Plot debt
ax[1].plot(bsim[0, :], label="b", color="r")
ax[1].plot(bsim.T, alpha=.1, color="r")
ax[1].legend(loc=4)
ax[1].set(xlabel="t", ylabel="debt")

fig.tight_layout()
return fig

def consumption_debt_fanchart(csim, cons_mean, cons_var,
bsim, debt_mean, debt_var):

# Get T
T = bsim.shape[1]

# Create percentiles of cross-section distributions
cmean = np.mean(cons_mean)
c90 = 1.65 * np.sqrt(cons_var)
c95 = 1.96 * np.sqrt(cons_var)
c_perc_95p, c_perc_95m = cons_mean + c95, cons_mean - c95
c_perc_90p, c_perc_90m = cons_mean + c90, cons_mean - c90

# Create percentiles of cross-section distributions
dmean = np.mean(debt_mean)
d90 = 1.65 * np.sqrt(debt_var)
d95 = 1.96 * np.sqrt(debt_var)
d_perc_95p, d_perc_95m = debt_mean + d95, debt_mean - d95
d_perc_90p, d_perc_90m = debt_mean + d90, debt_mean - d90

# Create second figure
fig, ax = plt.subplots(2, 1, figsize=(10, 8))
xvals = np.arange(T)

# Consumption fan
ax[0].plot(xvals, cons_mean, color="k")
ax[0].plot(csim.T, color="k", alpha=.25)
ax[0].fill_between(xvals, c_perc_95m, c_perc_95p, alpha=.25, color="b")

(continues on next page)
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(continued from previous page)

ax[0].fill_between(xvals, c_perc_90m, c_perc_90p, alpha=.25, color="r")
ax[0].set(title="Consumption/Debt over time",

ylim=(cmean-15, cmean+15), ylabel="consumption")

# Debt fan
ax[1].plot(xvals, debt_mean, color="k")
ax[1].plot(bsim.T, color="k", alpha=.25)
ax[1].fill_between(xvals, d_perc_95m, d_perc_95p, alpha=.25, color="b")
ax[1].fill_between(xvals, d_perc_90m, d_perc_90p, alpha=.25, color="r")
ax[1].set(xlabel="t", ylabel="debt")

fig.tight_layout()
return fig

Now let’s create figures with initial conditions of zero for 𝑦0 and 𝑏0

out = income_consumption_debt_series(A_LSS, C_LSS, G_LSS, μ_0, Σ_0)
bsim0, csim0, ysim0 = out[:3]
cons_mean0, cons_var0, debt_mean0, debt_var0 = out[3:]

consumption_income_debt_figure(bsim0, csim0, ysim0)

plt.show()

/tmp/ipykernel_6772/353008971.py:31: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
cons_mean[t], cons_var[t] = μ_y[1], Σ_y[1, 1]

/tmp/ipykernel_6772/353008971.py:32: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
debt_mean[t], debt_var[t] = μ_x[3], Σ_x[3, 3]
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consumption_debt_fanchart(csim0, cons_mean0, cons_var0,
bsim0, debt_mean0, debt_var0)

plt.show()
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Here is what is going on in the above graphs.
For our simulation, we have set initial conditions 𝑏0 = 𝑦−1 = 𝑦−2 = 0.
Because 𝑦−1 = 𝑦−2 = 0, nonfinancial income 𝑦𝑡 starts far below its stationary mean 𝜇𝑦,∞ and rises early in each
simulation.
Recall from the previous lecture that we can represent the optimal decision rule for consumption in terms of the co-
integrating relationship

(1 − 𝛽)𝑏𝑡 + 𝑐𝑡 = (1 − 𝛽)𝐸𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗 (8.6)

So at time 0 we have

𝑐0 = (1 − 𝛽)𝐸0
∞

∑
𝑡=0

𝛽𝑗𝑦𝑡

This tells us that consumption starts at the income that would be paid by an annuity whose value equals the expected
discounted value of nonfinancial income at time 𝑡 = 0.
To support that level of consumption, the consumer borrows a lot early and consequently builds up substantial debt.
In fact, he or she incurs so much debt that eventually, in the stochastic steady state, he consumes less each period than his
nonfinancial income.
He uses the gap between consumption and nonfinancial income mostly to service the interest payments due on his debt.
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Thus, when we look at the panel of debt in the accompanying graph, we see that this is a group of ex-ante identical people
each of whom starts with zero debt.
All of them accumulate debt in anticipation of rising nonfinancial income.
They expect their nonfinancial income to rise toward the invariant distribution of income, a consequence of our having
started them at 𝑦−1 = 𝑦−2 = 0.

Cointegration Residual

The following figure plots realizations of the left side of (8.6), which, as discussed in our last lecture, is called the cointe-
grating residual.
As mentioned above, the right side can be thought of as an annuity payment on the expected present value of future
income 𝐸𝑡 ∑∞

𝑗=0 𝛽𝑗𝑦𝑡+𝑗.

Early along a realization, 𝑐𝑡 is approximately constant while (1 − 𝛽)𝑏𝑡 and (1 − 𝛽)𝐸𝑡 ∑∞
𝑗=0 𝛽𝑗𝑦𝑡+𝑗 both rise markedly

as the household’s present value of income and borrowing rise pretty much together.
This example illustrates the following point: the definition of cointegration implies that the cointegrating residual is
asymptotically covariance stationary, not covariance stationary.
The cointegrating residual for the specification with zero income and zero debt initially has a notable transient component
that dominates its behavior early in the sample.
By altering initial conditions, we shall remove this transient in our second example to be presented below

def cointegration_figure(bsim, csim):
"""
Plots the cointegration
"""
# Create figure
fig, ax = plt.subplots(figsize=(10, 8))
ax.plot((1 - β) * bsim[0, :] + csim[0, :], color="k")
ax.plot((1 - β) * bsim.T + csim.T, color="k", alpha=.1)

ax.set(title="Cointegration of Assets and Consumption", xlabel="t")

return fig

cointegration_figure(bsim0, csim0)
plt.show()
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8.5.3 A “Borrowers and Lenders” Closed Economy

When we set 𝑦−1 = 𝑦−2 = 0 and 𝑏0 = 0 in the preceding exercise, we make debt “head north” early in the sample.
Average debt in the cross-section rises and approaches the asymptote.
We can regard these as outcomes of a “small open economy” that borrows from abroad at the fixed gross interest rate
𝑅 = 𝑟 + 1 in anticipation of rising incomes.
So with the economic primitives set as above, the economy converges to a steady state in which there is an excess aggregate
supply of risk-free loans at a gross interest rate of 𝑅.
This excess supply is filled by “foreigner lenders” willing to make those loans.
We can use virtually the same code to rig a “poor man’s Bewley [Bewley, 1986] model” in the following way

• as before, we start everyone at 𝑏0 = 0.

• But instead of starting everyone at 𝑦−1 = 𝑦−2 = 0, we draw [𝑦−1
𝑦−2

] from the invariant distribution of the {𝑦𝑡}
process.

This rigs a closed economy in which people are borrowing and lending with each other at a gross risk-free interest rate of
𝑅 = 𝛽−1.
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Across the group of people being analyzed, risk-free loans are in zero excess supply.
We have arranged primitives so that 𝑅 = 𝛽−1 clears the market for risk-free loans at zero aggregate excess supply.
So the risk-free loans are being made from one person to another within our closed set of agents.
There is no need for foreigners to lend to our group.
Let’s have a look at the corresponding figures

out = income_consumption_debt_series(A_LSS, C_LSS, G_LSS, mxbewley, sxbewley)
bsimb, csimb, ysimb = out[:3]
cons_meanb, cons_varb, debt_meanb, debt_varb = out[3:]

consumption_income_debt_figure(bsimb, csimb, ysimb)

plt.show()

/tmp/ipykernel_6772/353008971.py:31: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
cons_mean[t], cons_var[t] = μ_y[1], Σ_y[1, 1]

/tmp/ipykernel_6772/353008971.py:32: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
debt_mean[t], debt_var[t] = μ_x[3], Σ_x[3, 3]
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consumption_debt_fanchart(csimb, cons_meanb, cons_varb,
bsimb, debt_meanb, debt_varb)

plt.show()
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The graphs confirm the following outcomes:
• As before, the consumption distribution spreads out over time.

But now there is some initial dispersion because there is ex-ante heterogeneity in the initial draws of [𝑦−1
𝑦−2

].

• As before, the cross-section distribution of debt spreads out over time.
• Unlike before, the average level of debt stays at zero, confirming that this is a closed borrower-and-lender economy.
• Now the cointegrating residual seems stationary, and not just asymptotically stationary.

Let’s have a look at the cointegration figure

cointegration_figure(bsimb, csimb)
plt.show()
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CHAPTER

NINE

PRODUCTION SMOOTHING VIA INVENTORIES

Contents

• Production Smoothing via Inventories
– Overview

– Example 1

– Inventories Not Useful

– Inventories Useful but are Hardwired to be Zero Always

– Example 2

– Example 3

– Example 4

– Example 5

– Example 6

– Exercises

In addition to what’s in Anaconda, this lecture employs the following library:

!pip install quantecon

9.1 Overview

This lecture can be viewed as an application of this quantecon lecture about linear quadratic control theory.
It formulates a discounted dynamic program for a firm that chooses a production schedule to balance

• minimizing costs of production across time, against
• keeping costs of holding inventories low

In the tradition of a classic book by Holt, Modigliani, Muth, and Simon [Holt et al., 1960], we simplify the firm’s problem
by formulating it as a linear quadratic discounted dynamic programming problem of the type studied in this quantecon
lecture.
Because its costs of production are increasing and quadratic in production, the firm holds inventories as a buffer stock in
order to smooth production across time, provided that holding inventories is not too costly.
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But the firm also wants to make its sales out of existing inventories, a preference that we represent by a cost that is quadratic
in the difference between sales in a period and the firm’s beginning of period inventories.
We compute examples designed to indicate how the firm optimally smooths production while keeping inventories close
to sales.
To introduce components of the model, let

• 𝑆𝑡 be sales at time 𝑡
• 𝑄𝑡 be production at time 𝑡
• 𝐼𝑡 be inventories at the beginning of time 𝑡
• 𝛽 ∈ (0, 1) be a discount factor
• 𝑐(𝑄𝑡) = 𝑐1𝑄𝑡 + 𝑐2𝑄2

𝑡 , be a cost of production function, where 𝑐1 > 0, 𝑐2 > 0, be an inventory cost function
• 𝑑(𝐼𝑡, 𝑆𝑡) = 𝑑1𝐼𝑡 + 𝑑2(𝑆𝑡 − 𝐼𝑡)2, where 𝑑1 > 0, 𝑑2 > 0, be a cost-of-holding-inventories function, consisting of
two components:

– a cost 𝑑1𝐼𝑡 of carrying inventories, and
– a cost 𝑑2(𝑆𝑡 − 𝐼𝑡)2 of having inventories deviate from sales

• 𝑝𝑡 = 𝑎0 − 𝑎1𝑆𝑡 + 𝑣𝑡 be an inverse demand function for a firm’s product, where 𝑎0 > 0, 𝑎1 > 0 and 𝑣𝑡 is a demand
shock at time 𝑡

• 𝜋_𝑡 = 𝑝𝑡𝑆𝑡 − 𝑐(𝑄𝑡) − 𝑑(𝐼𝑡, 𝑆𝑡) be the firm’s profits at time 𝑡
• ∑∞

𝑡=0 𝛽𝑡𝜋𝑡 be the present value of the firm’s profits at time 0
• 𝐼𝑡+1 = 𝐼𝑡 + 𝑄𝑡 − 𝑆𝑡 be the law of motion of inventories
• 𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝜖𝑡+1 be a law of motion for an exogenous state vector 𝑧𝑡 that contains time 𝑡 information useful
for predicting the demand shock 𝑣𝑡

• 𝑣𝑡 = 𝐺𝑧𝑡 link the demand shock to the information set 𝑧𝑡

• the constant 1 be the first component of 𝑧𝑡

To map our problem into a linear-quadratic discounted dynamic programming problem (also known as an optimal linear
regulator), we define the state vector at time 𝑡 as

𝑥𝑡 = [𝐼𝑡
𝑧𝑡

]

and the control vector as

𝑢𝑡 = [𝑄𝑡
𝑆𝑡

]

The law of motion for the state vector 𝑥𝑡 is evidently

[𝐼𝑡+1
𝑧𝑡

] = [ 1 0
0 𝐴22

] [𝐼𝑡
𝑧𝑡

] + [1 −1
0 0 ] [𝑄𝑡

𝑆𝑡
] + [ 0

𝐶2
] 𝜖𝑡+1

or

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝜖𝑡+1

(At this point, we ask that you please forgive us for using 𝑄𝑡 to be the firm’s production at time 𝑡, while below we use 𝑄
as the matrix in the quadratic form 𝑢′

𝑡𝑄𝑢𝑡 that appears in the firm’s one-period profit function)
We can express the firm’s profit as a function of states and controls as

𝜋𝑡 = −(𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝑢′
𝑡𝑁𝑥𝑡)
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To form the matrices 𝑅, 𝑄, 𝑁 in an LQ dynamic programming problem, we note that the firm’s profits at time 𝑡 function
can be expressed

𝜋𝑡 =𝑝𝑡𝑆𝑡 − 𝑐 (𝑄𝑡) − 𝑑 (𝐼𝑡, 𝑆𝑡)
= (𝑎0 − 𝑎1𝑆𝑡 + 𝑣𝑡) 𝑆𝑡 − 𝑐1𝑄𝑡 − 𝑐2𝑄2

𝑡 − 𝑑1𝐼𝑡 − 𝑑2 (𝑆𝑡 − 𝐼𝑡)
2

=𝑎0𝑆𝑡 − 𝑎1𝑆2
𝑡 + 𝐺𝑧𝑡𝑆𝑡 − 𝑐1𝑄𝑡 − 𝑐2𝑄2

𝑡 − 𝑑1𝐼𝑡 − 𝑑2𝑆2
𝑡 − 𝑑2𝐼2

𝑡 + 2𝑑2𝑆𝑡𝐼𝑡

= − ⎛⎜⎜
⎝

𝑑1𝐼𝑡 + 𝑑2𝐼2
𝑡⏟⏟⏟⏟⏟

𝑥′
𝑡𝑅𝑥𝑡

+ 𝑎1𝑆2
𝑡 + 𝑑2𝑆2

𝑡 + 𝑐2𝑄2
𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢′
𝑡𝑄𝑢𝑡

− 𝑎0𝑆𝑡 − 𝐺𝑧𝑡𝑆𝑡 + 𝑐1𝑄𝑡 − 2𝑑2𝑆𝑡𝐼𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2𝑢′

𝑡𝑁𝑥𝑡

⎞⎟⎟
⎠

= −
⎛⎜⎜⎜⎜
⎝

[ 𝐼𝑡 𝑧′
𝑡 ] [ 𝑑2

𝑑1
2 𝑆𝑐

𝑑1
2 𝑆′

𝑐 0 ]
⏟⏟⏟⏟⏟⏟⏟

≡𝑅

[ 𝐼𝑡
𝑧𝑡

] + [ 𝑄𝑡 𝑆𝑡 ] [ 𝑐2 0
0 𝑎1 + 𝑑2

]
⏟⏟⏟⏟⏟⏟⏟

≡𝑄

[ 𝑄𝑡
𝑆𝑡

] + 2 [ 𝑄𝑡 𝑆𝑡 ] [ 0 𝑐1
2 𝑆𝑐

−𝑑2 − 𝑎0
2 𝑆𝑐 − 𝐺

2
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≡𝑁

[ 𝐼𝑡
𝑧𝑡

]
⎞⎟⎟⎟⎟
⎠

where 𝑆𝑐 = [1, 0].
Remark on notation: The notation for cross product term in the QuantEcon library is 𝑁 .
The firms’ optimum decision rule takes the form

𝑢𝑡 = −𝐹𝑥𝑡

and the evolution of the state under the optimal decision rule is

𝑥𝑡+1 = (𝐴 − 𝐵𝐹)𝑥𝑡 + 𝐶𝜖𝑡+1

The firm chooses a decision rule for 𝑢𝑡 that maximizes

𝐸0
∞

∑
𝑡=0

𝛽𝑡𝜋𝑡

subject to a given 𝑥0.
This is a stochastic discounted LQ dynamic program.
Here is code for computing an optimal decision rule and for analyzing its consequences.

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import numpy as np
import quantecon as qe

class SmoothingExample:
"""
Class for constructing, solving, and plotting results for
inventories and sales smoothing problem.
"""

def __init__(self,
β=0.96, # Discount factor
c1=1, # Cost-of-production
c2=1,
d1=1, # Cost-of-holding inventories
d2=1,
a0=10, # Inverse demand function

(continues on next page)
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(continued from previous page)

a1=1,
A22=[[1, 0], # z process

[1, 0.9]],
C2=[[0], [1]],
G=[0, 1]):

self.β = β
self.c1, self.c2 = c1, c2
self.d1, self.d2 = d1, d2
self.a0, self.a1 = a0, a1
self.A22 = np.atleast_2d(A22)
self.C2 = np.atleast_2d(C2)
self.G = np.atleast_2d(G)

# Dimensions
k, j = self.C2.shape # Dimensions for randomness part
n = k + 1 # Number of states
m = 2 # Number of controls

Sc = np.zeros(k)
Sc[0] = 1

# Construct matrices of transition law
A = np.zeros((n, n))
A[0, 0] = 1
A[1:, 1:] = self.A22

B = np.zeros((n, m))
B[0, :] = 1, -1

C = np.zeros((n, j))
C[1:, :] = self.C2

self.A, self.B, self.C = A, B, C

# Construct matrices of one period profit function
R = np.zeros((n, n))
R[0, 0] = d2
R[1:, 0] = d1 / 2 * Sc
R[0, 1:] = d1 / 2 * Sc

Q = np.zeros((m, m))
Q[0, 0] = c2
Q[1, 1] = a1 + d2

N = np.zeros((m, n))
N[1, 0] = - d2
N[0, 1:] = c1 / 2 * Sc
N[1, 1:] = - a0 / 2 * Sc - self.G / 2

self.R, self.Q, self.N = R, Q, N

# Construct LQ instance
self.LQ = qe.LQ(Q, R, A, B, C, N, beta=β)
self.LQ.stationary_values()

(continues on next page)
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def simulate(self, x0, T=100):

c1, c2 = self.c1, self.c2
d1, d2 = self.d1, self.d2
a0, a1 = self.a0, self.a1
G = self.G

x_path, u_path, w_path = self.LQ.compute_sequence(x0, ts_length=T)

I_path = x_path[0, :-1]
z_path = x_path[1:, :-1]
�_path = (G @ z_path)[0, :]

Q_path = u_path[0, :]
S_path = u_path[1, :]

revenue = (a0 - a1 * S_path + �_path) * S_path
cost_production = c1 * Q_path + c2 * Q_path ** 2
cost_inventories = d1 * I_path + d2 * (S_path - I_path) ** 2

Q_no_inventory = (a0 + �_path - c1) / (2 * (a1 + c2))
Q_hardwired = (a0 + �_path - c1) / (2 * (a1 + c2 + d2))

fig, ax = plt.subplots(2, 2, figsize=(15, 10))

ax[0, 0].plot(range(T), I_path, label="inventories")
ax[0, 0].plot(range(T), S_path, label="sales")
ax[0, 0].plot(range(T), Q_path, label="production")
ax[0, 0].legend(loc=1)
ax[0, 0].set_title("inventories, sales, and production")

ax[0, 1].plot(range(T), (Q_path - S_path), color='b')
ax[0, 1].set_ylabel("change in inventories", color='b')
span = max(abs(Q_path - S_path))
ax[0, 1].set_ylim(0-span*1.1, 0+span*1.1)
ax[0, 1].set_title("demand shock and change in inventories")

ax1_ = ax[0, 1].twinx()
ax1_.plot(range(T), �_path, color='r')
ax1_.set_ylabel("demand shock", color='r')
span = max(abs(�_path))
ax1_.set_ylim(0-span*1.1, 0+span*1.1)

ax1_.plot([0, T], [0, 0], '--', color='k')

ax[1, 0].plot(range(T), revenue, label="revenue")
ax[1, 0].plot(range(T), cost_production, label="cost_production")
ax[1, 0].plot(range(T), cost_inventories, label="cost_inventories")
ax[1, 0].legend(loc=1)
ax[1, 0].set_title("profits decomposition")

ax[1, 1].plot(range(T), Q_path, label="production")
ax[1, 1].plot(range(T), Q_hardwired, label='production when $I_t$ \

forced to be zero')
ax[1, 1].plot(range(T), Q_no_inventory, label='production when \

inventories not useful')

(continues on next page)
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ax[1, 1].legend(loc=1)
ax[1, 1].set_title('three production concepts')

plt.show()

Notice that the above code sets parameters at the following default values
• discount factor 𝛽 = 0.96,
• inverse demand function: 𝑎0 = 10, 𝑎1 = 1
• cost of production 𝑐1 = 1, 𝑐2 = 1
• costs of holding inventories 𝑑1 = 1, 𝑑2 = 1

In the examples below, we alter some or all of these parameter values.

9.2 Example 1

In this example, the demand shock follows AR(1) process:

𝜈𝑡 = 𝛼 + 𝜌𝜈𝑡−1 + 𝜖𝑡,

which implies

𝑧𝑡+1 = [ 1
𝑣𝑡+1

] = [ 1 0
𝛼 𝜌 ] [ 1

𝑣𝑡
]

⏟
𝑧𝑡

+ [ 0
1 ] 𝜖𝑡+1.

We set 𝛼 = 1 and 𝜌 = 0.9, their default values.
We’ll calculate and display outcomes, then discuss them below the pertinent figures.

ex1 = SmoothingExample()

x0 = [0, 1, 0]
ex1.simulate(x0)
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The figures above illustrate various features of an optimal production plan.
Starting from zero inventories, the firm builds up a stock of inventories and uses them to smooth costly production in the
face of demand shocks.
Optimal decisions evidently respond to demand shocks.
Inventories are always less than sales, so some sales come from current production, a consequence of the cost, 𝑑1𝐼𝑡 of
holding inventories.
The lower right panel shows differences between optimal production and two alternative production concepts that come
from altering the firm’s cost structure – i.e., its technology.
These two concepts correspond to these distinct altered firm problems.

• a setting in which inventories are not needed
• a setting in which they are needed but we arbitrarily prevent the firm from holding inventories by forcing it to set

𝐼𝑡 = 0 always
We use these two alternative production concepts in order to shed light on the baseline model.
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9.3 Inventories Not Useful

Let’s turn first to the setting in which inventories aren’t needed.
In this problem, the firm forms an output plan that maximizes the expected value of

∞
∑
𝑡=0

𝛽𝑡{𝑝𝑡𝑄𝑡 − 𝐶(𝑄𝑡)}

It turns out that the optimal plan for𝑄𝑡 for this problem also solves a sequence of static problems max𝑄𝑡
{𝑝𝑡𝑄𝑡 −𝑐(𝑄𝑡)}.

When inventories aren’t required or used, sales always equal production.
This simplifies the problem and the optimal no-inventory production maximizes the expected value of

∞
∑
𝑡=0

𝛽𝑡 {𝑝𝑡𝑄𝑡 − 𝐶 (𝑄𝑡)} .

The optimum decision rule is

𝑄𝑛𝑖
𝑡 = 𝑎0 + 𝜈𝑡 − 𝑐1

𝑐2 + 𝑎1
.

9.4 Inventories Useful but are Hardwired to be Zero Always

Next, we turn to a distinct problem in which inventories are useful – meaning that there are costs of 𝑑2(𝐼𝑡−𝑆𝑡)2 associated
with having sales not equal to inventories – but we arbitrarily impose on the firm the costly restriction that it never hold
inventories.
Here the firm’s maximization problem is

max
{𝐼𝑡,𝑄𝑡,𝑆𝑡}

∞
∑
𝑡=0

𝛽𝑡 {𝑝𝑡𝑆𝑡 − 𝐶 (𝑄𝑡) − 𝑑 (𝐼𝑡, 𝑆𝑡)}

subject to the restrictions that 𝐼𝑡 = 0 for all 𝑡 and that 𝐼𝑡+1 = 𝐼𝑡 + 𝑄𝑡 − 𝑆𝑡.
The restriction that 𝐼𝑡 = 0 implies that 𝑄𝑡 = 𝑆𝑡 and that the maximization problem reduces to

max
𝑄𝑡

∞
∑
𝑡=0

𝛽𝑡 {𝑝𝑡𝑄𝑡 − 𝐶 (𝑄𝑡) − 𝑑 (0, 𝑄𝑡)}

Here the optimal production plan is

𝑄ℎ
𝑡 = 𝑎0 + 𝜈𝑡 − 𝑐1

𝑐2 + 𝑎1 + 𝑑2
.

We introduce this 𝐼𝑡 is hardwired to zero specification in order to shed light on the role that inventories play by comparing
outcomes with those under our two other versions of the problem.
The bottom right panel displays a production path for the original problem that we are interested in (the blue line) as well
with an optimal production path for the model in which inventories are not useful (the green path) and also for the model
in which, although inventories are useful, they are hardwired to zero and the firm pays cost 𝑑(0, 𝑄𝑡) for not setting sales
𝑆𝑡 = 𝑄𝑡 equal to zero (the orange line).
Notice that it is typically optimal for the firm to produce more when inventories aren’t useful. Here there is no requirement
to sell out of inventories and no costs from having sales deviate from inventories.
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But “typical” does not mean “always”.
Thus, if we look closely, we notice that for small 𝑡, the green “production when inventories aren’t useful” line in the lower
right panel is below optimal production in the original model.
High optimal production in the original model early on occurs because the firm wants to accumulate inventories quickly
in order to acquire high inventories for use in later periods.
But how the green line compares to the blue line early on depends on the evolution of the demand shock, as we will see
in a deterministically seasonal demand shock example to be analyzed below.
In that example, the original firm optimally accumulates inventories slowly because the next positive demand shock is in
the distant future.
To make the green-blue model production comparison easier to see, let’s confine the graphs to the first 10 periods:

ex1.simulate(x0, T=10)

9.5 Example 2

Next, we shut down randomness in demand and assume that the demand shock 𝜈𝑡 follows a deterministic path:

𝜈𝑡 = 𝛼 + 𝜌𝜈𝑡−1

Again, we’ll compute and display outcomes in some figures

ex2 = SmoothingExample(C2=[[0], [0]])

(continues on next page)
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x0 = [0, 1, 0]
ex2.simulate(x0)

9.6 Example 3

Now we’ll put randomness back into the demand shock process and also assume that there are zero costs of holding
inventories.
In particular, we’ll look at a situation in which 𝑑1 = 0 but 𝑑2 > 0.
Now it becomes optimal to set sales approximately equal to inventories and to use inventories to smooth production quite
well, as the following figures confirm

ex3 = SmoothingExample(d1=0)

x0 = [0, 1, 0]
ex3.simulate(x0)
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9.7 Example 4

To bring out some features of the optimal policy that are related to some technical issues in linear control theory, we’ll
now temporarily assume that it is costless to hold inventories.
When we completely shut down the cost of holding inventories by setting 𝑑1 = 0 and 𝑑2 = 0, something absurd happens
(because the Bellman equation is opportunistic and very smart).
(Technically, we have set parameters that end up violating conditions needed to assure stability of the optimally controlled
state.)
The firm finds it optimal to set 𝑄𝑡 ≡ 𝑄∗ = −𝑐1

2𝑐2
, an output level that sets the costs of production to zero (when 𝑐1 > 0,

as it is with our default settings, then it is optimal to set production negative, whatever that means!).
Recall the law of motion for inventories

𝐼𝑡+1 = 𝐼𝑡 + 𝑄𝑡 − 𝑆𝑡

So when 𝑑1 = 𝑑2 = 0 so that the firm finds it optimal to set 𝑄𝑡 = −𝑐1
2𝑐2

for all 𝑡, then

𝐼𝑡+1 − 𝐼𝑡 = −𝑐1
2𝑐2

− 𝑆𝑡 < 0

for almost all values of 𝑆𝑡 under our default parameters that keep demand positive almost all of the time.
The dynamic program instructs the firm to set production costs to zero and to run a Ponzi scheme by running inventories
down forever.
(We can interpret this as the firm somehow going short in or borrowing inventories)
The following figures confirm that inventories head south without limit
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ex4 = SmoothingExample(d1=0, d2=0)

x0 = [0, 1, 0]
ex4.simulate(x0)

Let’s shorten the time span displayed in order to highlight what is going on.
We’ll set the horizon 𝑇 = 30 with the following code

# shorter period
ex4.simulate(x0, T=30)
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9.8 Example 5

Now we’ll assume that the demand shock that follows a linear time trend

𝑣𝑡 = 𝑏 + 𝑎𝑡, 𝑎 > 0, 𝑏 > 0

To represent this, we set 𝐶2 = [0
0] and

𝐴22 = [ 1 0
1 1 ] , 𝑥0 = [ 1

0 ] , 𝐺 = [ 𝑏 𝑎 ]

# Set parameters
a = 0.5
b = 3.

ex5 = SmoothingExample(A22=[[1, 0], [1, 1]], C2=[[0], [0]], G=[b, a])

x0 = [0, 1, 0] # set the initial inventory as 0
ex5.simulate(x0, T=10)
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9.9 Example 6

Now we’ll assume a deterministically seasonal demand shock.
To represent this we’ll set

𝐴22 =
⎡
⎢
⎢
⎢
⎣

1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤
⎥
⎥
⎥
⎦

, 𝐶2 =
⎡
⎢
⎢
⎢
⎣

0
0
0
0
0

⎤
⎥
⎥
⎥
⎦

, 𝐺′ =
⎡
⎢
⎢
⎢
⎣

𝑏
𝑎
0
0
0

⎤
⎥
⎥
⎥
⎦

where 𝑎 > 0, 𝑏 > 0 and

𝑥0 =
⎡
⎢
⎢
⎢
⎣

1
0
1
0
0

⎤
⎥
⎥
⎥
⎦

ex6 = SmoothingExample(A22=[[1, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0]],

C2=[[0], [0], [0], [0], [0]],
G=[b, a, 0, 0, 0])

(continues on next page)
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(continued from previous page)

x00 = [0, 1, 0, 1, 0, 0] # Set the initial inventory as 0
ex6.simulate(x00, T=20)

Now we’ll generate some more examples that differ simply from the initial season of the year in which we begin the
demand shock

x01 = [0, 1, 1, 0, 0, 0]
ex6.simulate(x01, T=20)
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x02 = [0, 1, 0, 0, 1, 0]
ex6.simulate(x02, T=20)

150 Chapter 9. Production Smoothing via Inventories



Dynamic Linear Economies

x03 = [0, 1, 0, 0, 0, 1]
ex6.simulate(x03, T=20)

9.10 Exercises

Please try to analyze some inventory sales smoothing problems using the SmoothingExample class.

Exercise 9.10.1
Assume that the demand shock follows AR(2) process below:

𝜈𝑡 = 𝛼 + 𝜌1𝜈𝑡−1 + 𝜌2𝜈𝑡−2 + 𝜖𝑡.

where 𝛼 = 1, 𝜌1 = 1.2, and 𝜌2 = −0.3. You need to construct 𝐴22, 𝐶, and 𝐺 matrices properly and then to input
them as the keyword arguments of SmoothingExample class. Simulate paths starting from the initial condition
𝑥0 = [0, 1, 0, 0]′.
After this, try to construct a very similar SmoothingExample with the same demand shock process but exclude the
randomness 𝜖𝑡. Compute the stationary states ̄𝑥 by simulating for a long period. Then try to add shocks with different
magnitude to ̄𝜈𝑡 and simulate paths. You should see how firms respond differently by staring at the production plans.

Solution to Exercise 9.10.1
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# set parameters
α = 1
ρ1 = 1.2
ρ2 = -.3

# construct matrices
A22 =[[1, 0, 0],

[1, ρ1, ρ2],
[0, 1, 0]]

C2 = [[0], [1], [0]]
G = [0, 1, 0]

ex1 = SmoothingExample(A22=A22, C2=C2, G=G)

x0 = [0, 1, 0, 0] # initial condition
ex1.simulate(x0)

# now silence the noise
ex1_no_noise = SmoothingExample(A22=A22, C2=[[0], [0], [0]], G=G)

# initial condition
x0 = [0, 1, 0, 0]

# compute stationary states
x_bar = ex1_no_noise.LQ.compute_sequence(x0, ts_length=250)[0][:, -1]
x_bar
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array([ 3.69387755, 1. , 10. , 10. ])

In the following, we add small and large shocks to ̄𝜈𝑡 and compare how firm responds differently in quantity. As the shock
is not very persistent under the parameterization we are using, we focus on a short period response.

T = 40

# small shock
x_bar1 = x_bar.copy()
x_bar1[2] += 2
ex1_no_noise.simulate(x_bar1, T=T)

# large shock
x_bar1 = x_bar.copy()
x_bar1[2] += 10
ex1_no_noise.simulate(x_bar1, T=T)
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Exercise 9.10.2
Change parameters of 𝐶(𝑄𝑡) and 𝑑(𝐼𝑡, 𝑆𝑡).

1. Make production more costly, by setting 𝑐2 = 5.
2. Increase the cost of having inventories deviate from sales, by setting 𝑑2 = 5.

Solution to Exercise 9.10.2

x0 = [0, 1, 0]

SmoothingExample(c2=5).simulate(x0)
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SmoothingExample(d2=5).simulate(x0)
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CHAPTER

TEN

INFORMATION AND CONSUMPTION SMOOTHING

Contents

• Information and Consumption Smoothing
– Overview

– Two Representations of One Nonfinancial Income Process

– Application of Kalman filter

– News Shocks and Less Informative Shocks

– Representation of 𝜖𝑡 Shock in Terms of Future 𝑦𝑡

– Representation in Terms of 𝑎𝑡 Shocks

– Permanent Income Consumption-Smoothing Model

– State Space Representations

– Computations

– Simulating Income Process and Two Associated Shock Processes

– Calculating Innovations in Another Way

– Another Invertibility Issue

In addition to what’s in Anaconda, this lecture employs the following libraries:

!pip install --upgrade quantecon

10.1 Overview

In the linear-quadratic permanent income of consumption smoothing model described in this quantecon lecture, a scalar
parameter 𝛽 ∈ (0, 1) plays two roles:

• it is a discount factor that the consumer applies to future utilities from consumption
• it is the reciprocal of the gross interest rate on risk-free one-period loans

That 𝛽 plays these two roles is essential in delivering the outcome that, regardless of the stochastic process that describes
his non-financial income, the consumer chooses to make consumption follow a random walk (see [Hall, 1978]).
In this lecture, we assign a third role to 𝛽:
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• it describes a first-order moving average process for the growth in non-financial income

10.1.1 Same non-financial incomes, different information

We study two consumers who have exactly the same nonfinancial income process and who both conform to the linear-
quadratic permanent income of consumption smoothing model described here.
The two consumers have different information about their future nonfinancial incomes.
A better informed consumer each period receives news in the form of a shock that simultaneously affects both today’s
nonfinancial income and the present value of future nonfinancial incomes in a particular way.
A less informed consumer each period receives a shock that equals the part of today’s nonfinancial income that could not
be forecast from past values of nonfinancial income.
Even though they receive exactly the same nonfinancial incomes each period, our two consumers behave differently be-
cause they have different information about their future nonfinancial incomes.
The second consumer receives less information about future nonfinancial incomes in a sense that we shall make precise.
This difference in their information sets manifests itself in their responding differently to what they regard as time 𝑡
information shocks.
Thus, although at each date they receive exactly the same histories of nonfinancial income, our two consumers receive
different shocks or news about their future nonfinancial incomes.
We use the different behaviors of our consumers as a way to learn about

• operating characteristics of a linear-quadratic permanent income model
• how the Kalman filter introduced in this lecture and/or another representation of the theory of optimal forecasting
introduced in this lecture embody lessons that can be applied to the news and noise literature

• ways of representing and computing optimal decision rules in the linear-quadratic permanent income model
• aRicardian equivalence outcome that describes effects on optimal consumption of a tax cut at time 𝑡 accompanied
by a foreseen permanent increases in taxes that is just sufficient to cover the interest payments used to service the
risk-free government bonds that are issued to finance the tax cut

• a simple application of alternative ways to factor a covariance generating function along lines described in this
lecture

This lecture can be regarded as an introduction to invertibility issues that take center stage in the analysis of fiscal
foresight by Eric Leeper, Todd Walker, and Susan Yang [Leeper et al., 2013], as well as in chapter 4 of [Sargent et al.,
1991].

10.2 Two Representations of One Nonfinancial Income Process

We study consequences of endowing a consumer with one of two alternative representations for the change in the con-
sumer’s nonfinancial income 𝑦𝑡+1 − 𝑦𝑡.
For both types of consumer, a parameter 𝛽 ∈ (0, 1) plays three roles.
It appears

• as a discount factor applied to future expected one-period utilities,
• as the reciprocal of a gross interest rate on one-period loans, and
• as a parameter in a first-order moving average that equals the increment in a consumer’s non-financial income
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The first representation, which we shall sometimes refer to as themore informative representation, is

𝑦𝑡+1 − 𝑦𝑡 = 𝜖𝑡+1 − 𝛽−1𝜖𝑡 (10.1)

where {𝜖𝑡} is an i.i.d. normally distributed scalar process with means of zero and contemporaneous variances 𝜎2
𝜖 .

This representation of the process is used by a consumer who at time 𝑡 knows both 𝑦𝑡 and the shock 𝜖𝑡 and can use both
of them to forecast future 𝑦𝑡+𝑗’s.
As we’ll see below, representation (10.1) has the peculiar property that a positive shock 𝜖𝑡+1 leaves the discounted present
value of the consumer’s financial income at time 𝑡 + 1 unaltered.
The second representation of the same {𝑦𝑡} process is

𝑦𝑡+1 − 𝑦𝑡 = 𝑎𝑡+1 − 𝛽𝑎𝑡 (10.2)

where {𝑎𝑡} is another i.i.d. normally distributed scalar process, with means of zero and now variances 𝜎2
𝑎 > 𝜎2

𝜖 .
The i.i.d. shock variances are related by

𝜎2
𝑎 = 𝛽−2𝜎2

𝜖 > 𝜎2
𝜖

so that the variance of the innovation exceeds the variance of the original shock by a multiplicative factor 𝛽−2.
Representation (10.2) is the innovations representation of equation (10.1) associated with Kalman filtering theory.
To see how this works, note that equating representations (10.1) and (10.2) for 𝑦𝑡+1 − 𝑦𝑡 implies 𝜖𝑡+1 − 𝛽−1𝜖𝑡 =
𝑎𝑡+1 − 𝛽𝑎𝑡, which in turn implies

𝑎𝑡+1 = 𝛽𝑎𝑡 + 𝜖𝑡+1 − 𝛽−1𝜖𝑡.

Solving this difference equation backwards for 𝑎𝑡+1 gives, after a few lines of algebra,

𝑎𝑡+1 = 𝜖𝑡+1 + (𝛽 − 𝛽−1)
∞

∑
𝑗=0

𝛽𝑗𝜖𝑡−𝑗 (10.3)

which we can also write as

𝑎𝑡+1 =
∞

∑
𝑗=0

ℎ𝑗𝜖𝑡+1−𝑗 ≡ ℎ(𝐿)𝜖𝑡+1

where 𝐿 is the one-period lag operator, ℎ(𝐿) = ∑∞
𝑗=0 ℎ𝑗𝐿𝑗, 𝐼 is the identity operator, and

ℎ(𝐿) = 𝐼 − 𝛽−1𝐿
𝐼 − 𝛽𝐿

Let 𝑔𝑗 ≡ 𝐸𝑧𝑡𝑧𝑡−𝑗 be the 𝑗th autocovariance of the {𝑦𝑡 − 𝑦𝑡−1} process.
Using calculations in the quantecon lecture, where 𝑧 ∈ 𝐶 is a complex variable, the covariance generating function
𝑔(𝑧) = ∑∞

𝑗=−∞ 𝑔𝑗𝑧𝑗 of the {𝑦𝑡 − 𝑦𝑡−1} process equals

𝑔(𝑧) = 𝜎2
𝜖 ℎ(𝑧)ℎ(𝑧−1) = 𝛽−2𝜎2

𝜖 > 𝜎2
𝜖 ,

which confirms that {𝑎𝑡} is a serially uncorrelated process with variance

𝜎2
𝑎 = 𝛽−1𝜎2

𝜖 .

To verify these claims, just notice that 𝑔(𝑧) = 𝛽−2𝜎2
𝜖 implies that

• 𝑔0 = 𝛽−2𝜎2
𝜖 , and
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• 𝑔𝑗 = 0 for 𝑗 ≠ 0.
Alternatively, if you are uncomfortable with covariance generating functions, note that we can directly calculate 𝜎2

𝑎 from
formula (10.3) according to

𝜎2
𝑎 = 𝜎2

𝜖 + [1 + (𝛽 − 𝛽−1)2
∞

∑
𝑗=0

𝛽2𝑗] = 𝛽−1𝜎2
𝜖 .

10.3 Application of Kalman filter

We can also use the the Kalman filter to obtain representation (10.2) from representation (10.1).
Thus, from equations associated with theKalman filter, it can be verified that the steady-state Kalman gain 𝐾 = 𝛽2 and
the steady state conditional covariance

Σ = 𝐸[(𝜖𝑡 − ̂𝜖𝑡)2|𝑦𝑡−1, 𝑦𝑡−2, …] = (1 − 𝛽2)𝜎2
𝜖

In a little more detail, let 𝑧𝑡 = 𝑦𝑡 − 𝑦𝑡−1 and form the state-space representation

𝜖𝑡+1 = 0𝜖𝑡 + 𝜖𝑡+1
𝑧𝑡+1 = −𝛽−1𝜖𝑡 + 𝜖𝑡+1

and assume that 𝜎𝜖 = 1 for convenience
Let’s compute the steady-state Kalman filter for this system.
Let 𝐾 be the steady-state gain and 𝑎𝑡+1 the one-step ahead innovation.
The steady-state innovations representation is

̂𝜖𝑡+1 = 0 ̂𝜖𝑡 + 𝐾𝑎𝑡+1
𝑧𝑡+1 = −𝛽𝑎𝑡 + 𝑎𝑡+1

By applying formulas for the steady-state Kalman filter, by hand it is possible to verify that𝐾 = 𝛽2, 𝜎2
𝑎 = 𝛽−2𝜎2

𝜖 = 𝛽−2,
and Σ = (1 − 𝛽2)𝜎2

𝜖 .
Alternatively, we can obtain these formulas via the classical filtering theory described in this lecture.

10.4 News Shocks and Less Informative Shocks

Representation (10.1) is cast in terms of a news shock 𝜖𝑡+1 that represents a shock to nonfinancial income coming from
taxes, transfers, and other random sources of income changes known to a well-informed person who perhaps has all sorts
of information about the income process.
Representation (10.2) for the same income process is driven by shocks 𝑎𝑡 that contain less information than the news
shock 𝜖𝑡.
Representation (10.2) is called the innovations representation for the {𝑦𝑡 − 𝑦𝑡−1} process.
It is cast in terms of what time series statisticians call the innovation or fundamental shock that emerges from applying the
theory of optimally predicting nonfinancial income based solely on the information in past levels of growth in nonfinancial
income.
Fundamental for the 𝑦𝑡 process means that the shock 𝑎𝑡 can be expressed as a square-summable linear combination of
𝑦𝑡, 𝑦𝑡−1, ….
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The shock 𝜖𝑡 is not fundamental because it has more information about the future of the {𝑦𝑡 − 𝑦𝑡−1} process than is
contained in 𝑎𝑡.
Representation (10.3) reveals the important fact that the original shock 𝜖𝑡 contains more information about future 𝑦’s
than is contained in the semi-infinite history 𝑦𝑡 = [𝑦𝑡, 𝑦𝑡−1, …].
Staring at representation (10.3) for 𝑎𝑡+1 shows that it consists both of new news 𝜖𝑡+1 as well as a long moving average
(𝛽 − 𝛽−1) ∑∞

𝑗=0 𝛽𝑗𝜖𝑡−𝑗 of old news.

Themore information representation (10.1) asserts that a shock 𝜖𝑡 results in an impulse response to nonfinancial income
of 𝜖𝑡 times the sequence

1, 1 − 𝛽−1, 1 − 𝛽−1, …

so that a shock that increases nonfinancial income 𝑦𝑡 by 𝜖𝑡 at time 𝑡 is followed by a change in future 𝑦 of 𝜖𝑡 times
1 − 𝛽−1 < 0 in all subsequent periods.
Because 1 − 𝛽−1 < 0, this means that a positive shock of 𝜖𝑡 today raises income at time 𝑡 by 𝜖𝑡 and then permanently
decreases all future incomes by (𝛽−1 − 1)𝜖𝑡.
This pattern precisely describes the following mental experiment:

• The consumer receives a government transfer of 𝜖𝑡 at time 𝑡.
• The government finances the transfer by issuing a one-period bond on which it pays a gross one-period risk-free
interest rate equal to 𝛽−1.

• In each future period, the government rolls over the one-period bond and so continues to borrow 𝜖𝑡 forever.
• The government imposes a lump-sum tax on the consumer in order to pay just the current interest on the original
bond and its rolled over successors.

• Thus, in periods 𝑡 + 1, 𝑡 + 2, …, the government levies a lump-sum tax on the consumer of 𝛽−1 − 1 that is just
enough to pay the interest on the bond.

The present value of the impulse response or moving average coefficients equals 𝑑𝜖(𝐿) = 0
1−𝛽 = 0, a fact that we’ll see

again below.
Representation (10.2), i.e., the innovations representation, asserts that a shock 𝑎𝑡 results in an impulse response to nonfi-
nancial income of 𝑎𝑡 times

1, 1 − 𝛽, 1 − 𝛽, …

so that a shock that increases income 𝑦𝑡 by 𝑎𝑡 at time 𝑡 can be expected to be followed by an increase in 𝑦𝑡+𝑗 of 𝑎𝑡 times
1 − 𝛽 > 0 in all future periods 𝑗 = 1, 2, ….

The present value of the impulse response or moving average coefficients for representation (10.2) is 𝑑𝑎(𝛽) = 1−𝛽2

1−𝛽 =
(1 + 𝛽), another fact that will be important below.

10.5 Representation of 𝜖𝑡 Shock in Terms of Future 𝑦𝑡

Notice that reprentation (10.1), namely, 𝑦𝑡+1 − 𝑦𝑡 = −𝛽−1𝜖𝑡 + 𝜖𝑡+1 implies the linear difference equation

𝜖𝑡 = 𝛽𝜖𝑡+1 − 𝛽(𝑦𝑡+1 − 𝑦𝑡).

Solving forward we obtain

𝜖𝑡 = 𝛽(𝑦𝑡 − (1 − 𝛽)
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗+1)
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This equation shows that 𝜖𝑡 equals 𝛽 times the one-step-backwards error in optimally backcasting 𝑦𝑡 based on the semi-
infinite future 𝑦𝑡

+ ≡ [𝑦𝑡+1, 𝑦𝑡+2, …] via the optimal backcasting formula

𝐸[𝑦𝑡|𝑦𝑡
+] = (1 − 𝛽)

∞
∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗+1

Thus, 𝜖𝑡 exactly reveals the gap between 𝑦𝑡 and 𝐸[𝑦𝑡|𝑦𝑡
+].

10.6 Representation in Terms of 𝑎𝑡 Shocks

Next notice that representation (10.2), namely, 𝑦𝑡+1 − 𝑦𝑡 = −𝛽𝑎𝑡 + 𝑎𝑡+1 implies the linear difference equation

𝑎𝑡+1 = 𝛽𝑎𝑡 + (𝑦𝑡+1 − 𝑦𝑡)

Solving this equation backward establishes that the one-step-prediction error 𝑎𝑡+1 is

𝑎𝑡+1 = 𝑦𝑡+1 − (1 − 𝛽)
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡−𝑗.

Here the information set is 𝑦𝑡 = [𝑦𝑡, 𝑦𝑡−1, …] and a one step-ahead optimal prediction is

𝐸[𝑦𝑡+1|𝑦𝑡] = (1 − 𝛽)
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡−𝑗

10.7 Permanent Income Consumption-Smoothing Model

When we computed optimal consumption-saving policies for our two representations (10.1) and (10.2) by using formulas
obtained with the difference equation approach described in quantecon lecture, we obtained:
for a consumer having the information assumed in the news representation (10.1):

𝑐𝑡+1 − 𝑐𝑡 = 0
𝑏𝑡+1 − 𝑏𝑡 = −𝛽−1𝜖𝑡

for a consumer having the more limited information associated with the innovations representation (10.2):

𝑐𝑡+1 − 𝑐𝑡 = (1 − 𝛽2)𝑎𝑡+1
𝑏𝑡+1 − 𝑏𝑡 = −𝛽𝑎𝑡

These formulas agree with outcomes from Python programs below that deploy state-space representations and dynamic
programming.
Evidently, although they receive exactly the same histories of nonfinancial incomethe two consumers behave differently.
The better informed consumer who has the information sets associated with representation (10.1) responds to each shock
𝜖𝑡+1 by leaving his consumption unaltered and saving all of 𝜖𝑡+1 in anticipation of the permanently increased taxes that he
will bear in order to service the permanent interest payments on the risk-free bonds that the government has presumably
issued to pay for the one-time addition 𝜖𝑡+1 to his time 𝑡 + 1 nonfinancial income.
The less well informed consumer who has information sets associated with representation (10.2) responds to a shock 𝑎𝑡+1
by increasing his consumption by what he perceives to be the permanent part of the increase in consumption and by
increasing his saving by what he perceives to be the temporary part.
The behavior of the better informed consumer sharply illustrates the behavior predicted in a classic Ricardian equivalence
experiment.
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10.8 State Space Representations

We now cast our representations (10.1) and (10.2), respectively, in terms of the following two state space systems:

[𝑦𝑡+1
𝜖𝑡+1

] = [1 −𝛽−1

0 0 ] [𝑦𝑡
𝜖𝑡

] + [𝜎𝜖
𝜎𝜖

] 𝑣𝑡+1

𝑦𝑡 = [1 0] [𝑦𝑡
𝜖𝑡

]
(10.4)

and

[𝑦𝑡+1
𝑎𝑡+1

] = [1 −𝛽
0 0 ] [𝑦𝑡

𝑎𝑡
] + [𝜎𝑎

𝜎𝑎
] 𝑢𝑡+1

𝑦𝑡 = [1 0] [𝑦𝑡
𝑎𝑡

]
(10.5)

where {𝑣𝑡} and {𝑢𝑡} are both i.i.d. sequences of univariate standardized normal random variables.
These two alternative income processes are ready to be used in the framework presented in the section “Comparison with
the Difference Equation Approach” in thid quantecon lecture.
All the code that we shall use below is presented in that lecture.

10.9 Computations

We shall use Python to form two state-space representations (10.4) and (10.5).
We set the following parameter values 𝜎𝜖 = 1, 𝜎𝑎 = 𝛽−1𝜎𝜖 = 𝛽−1 where 𝛽 is the same value as the discount factor in
the household’s problem in the LQ savings problem in the lecture.
For these two representations, we use the code in this lecture to

• compute optimal decision rules for 𝑐𝑡, 𝑏𝑡 for the two types of consumers associated with our two representations
of nonfinancial income

• use the value function objects 𝑃 , 𝑑 returned by the code to compute optimal values for the two representations
when evaluated at the initial condition

𝑥0 = [10
0 ]

for each representation.
• create instances of the LinearStateSpace class for the two representations of the {𝑦𝑡} process and use them to obtain
impulse response functions of 𝑐𝑡 and 𝑏𝑡 to the respective shocks 𝜖𝑡 and 𝑎𝑡 for the two representations.

• run simulations of {𝑦𝑡, 𝑐𝑡, 𝑏𝑡} of length 𝑇 under both of the representations
We formulae the problem:

min
∞

∑
𝑡=0

𝛽𝑡 (𝑐𝑡 − 𝛾)2

subject to a sequence of constraints

𝑐𝑡 + 𝑏𝑡 = 1
1 + 𝑟𝑏𝑡+1 + 𝑦𝑡, 𝑡 ≥ 0

where 𝑦𝑡 follows one of the representations defined above.
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Define the control as 𝑢𝑡 ≡ 𝑐𝑡 − 𝛾.
(For simplicity we can assume 𝛾 = 0 below because 𝛾 has no effect on the impulse response functions that interest us.)
The state transition equations under our two representations for the nonfinancial income process {𝑦𝑡} can be written as

⎡⎢
⎣

𝑦𝑡+1
𝜖𝑡+1
𝑏𝑡+1

⎤⎥
⎦

= ⎡⎢
⎣

1 −𝛽−1 0
0 0 0

− (1 + 𝑟) 0 1 + 𝑟
⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝐴1

⎡⎢
⎣

𝑦𝑡
𝜖𝑡
𝑏𝑡

⎤⎥
⎦

+ ⎡⎢
⎣

0
0

1 + 𝑟
⎤⎥
⎦⏟⏟⏟⏟⏟

≡𝐵1

[ 𝑐𝑡 ] + ⎡⎢
⎣

𝜎𝜖
𝜎𝜖
0

⎤⎥
⎦⏟

≡𝐶1

𝜈𝑡+1,

and

⎡⎢
⎣

𝑦𝑡+1
𝑎𝑡+1
𝑏𝑡+1

⎤⎥
⎦

= ⎡⎢
⎣

1 −𝛽 0
0 0 0

− (1 + 𝑟) 0 1 + 𝑟
⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝐴2

⎡⎢
⎣

𝑦𝑡
𝑎𝑡
𝑏𝑡

⎤⎥
⎦

+ ⎡⎢
⎣

0
0

1 + 𝑟
⎤⎥
⎦⏟⏟⏟⏟⏟

≡𝐵2

[ 𝑐𝑡 ] + ⎡⎢
⎣

𝜎𝑎
𝜎𝑎
0

⎤⎥
⎦⏟

≡𝐶2

𝑢𝑡+1.

As usual, we start by importing packages.

import numpy as np
import quantecon as qe
import matplotlib.pyplot as plt

# Set parameters
β, σϵ = 0.95, 1
σa = σϵ / β

R = 1 / β

# Payoff matrices are the same for two representations
RLQ = np.array([[0, 0, 0],

[0, 0, 0],
[0, 0, 1e-12]]) # put penalty on debt

QLQ = np.array([1.])

# More informative representation state transition matrices
ALQ1 = np.array([[1, -R, 0],

[0, 0, 0],
[-R, 0, R]])

BLQ1 = np.array([[0, 0, R]]).T
CLQ1 = np.array([[σϵ, σϵ, 0]]).T

# Construct and solve the LQ problem
LQ1 = qe.LQ(QLQ, RLQ, ALQ1, BLQ1, C=CLQ1, beta=β)
P1, F1, d1 = LQ1.stationary_values()

# The optimal decision rule for c
-F1

array([[ 1. , -1. , -0.05]])
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Evidently, optimal consumption and debt decision rules for the consumer having news representation (10.1) are

𝑐∗
𝑡 = 𝑦𝑡 − 𝜖𝑡 − (1 − 𝛽) 𝑏𝑡,

𝑏∗
𝑡+1 = 𝛽−1𝑐∗

𝑡 + 𝛽−1𝑏𝑡 − 𝛽−1𝑦𝑡
= 𝛽−1𝑦𝑡 − 𝛽−1𝜖𝑡 − (𝛽−1 − 1) 𝑏𝑡 + 𝛽−1𝑏𝑡 − 𝛽−1𝑦𝑡
= 𝑏𝑡 − 𝛽−1𝜖𝑡.

# Innovations representation
ALQ2 = np.array([[1, -β, 0],

[0, 0, 0],
[-R, 0, R]])

BLQ2 = np.array([[0, 0, R]]).T
CLQ2 = np.array([[σa, σa, 0]]).T

LQ2 = qe.LQ(QLQ, RLQ, ALQ2, BLQ2, C=CLQ2, beta=β)
P2, F2, d2 = LQ2.stationary_values()

-F2

array([[ 1. , -0.9025, -0.05 ]])

For a consumer having access only to the information associated with the innovations representation (10.2), the optimal
decision rules are

𝑐∗
𝑡 = 𝑦𝑡 − 𝛽2𝑎𝑡 − (1 − 𝛽) 𝑏𝑡,

𝑏∗
𝑡+1 = 𝛽−1𝑐∗

𝑡 + 𝛽−1𝑏𝑡 − 𝛽−1𝑦𝑡
= 𝛽−1𝑦𝑡 − 𝛽𝑎𝑡 − (𝛽−1 − 1) 𝑏𝑡 + 𝛽−1𝑏𝑡 − 𝛽−1𝑦𝑡
= 𝑏𝑡 − 𝛽𝑎𝑡.

Now we construct two Linear State Space models that emerge from using optimal policies of the form 𝑢𝑡 = −𝐹𝑥𝑡.
Take the more informative original representation (10.1) as an example:

⎡⎢
⎣

𝑦𝑡+1
𝜖𝑡+1
𝑏𝑡+1

⎤⎥
⎦

= (𝐴1 − 𝐵1𝐹1) ⎡⎢
⎣

𝑦𝑡
𝜖𝑡
𝑏𝑡

⎤⎥
⎦

+ 𝐶1𝜈𝑡+1

[ 𝑐𝑡
𝑏𝑡

] = [ −𝐹1
𝑆𝑏

] ⎡⎢
⎣

𝑦𝑡
𝜖𝑡
𝑏𝑡

⎤⎥
⎦

To have the Linear State Space model be of an innovations representation form (10.2), we can simply replace the corre-
sponding matrices.

# Construct two Linear State Space models
Sb = np.array([0, 0, 1])

ABF1 = ALQ1 - BLQ1 @ F1
G1 = np.vstack([-F1, Sb])
LSS1 = qe.LinearStateSpace(ABF1, CLQ1, G1)

ABF2 = ALQ2 - BLQ2 @ F2
G2 = np.vstack([-F2, Sb])
LSS2 = qe.LinearStateSpace(ABF2, CLQ2, G2)
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The following code computes impulse response functions of 𝑐𝑡 and 𝑏𝑡.

J = 5 # Number of coefficients that we want

x_res1, y_res1 = LSS1.impulse_response(j=J)
b_res1 = np.array([x_res1[i][2, 0] for i in range(J)])
c_res1 = np.array([y_res1[i][0, 0] for i in range(J)])

x_res2, y_res2 = LSS2.impulse_response(j=J)
b_res2 = np.array([x_res2[i][2, 0] for i in range(J)])
c_res2 = np.array([y_res2[i][0, 0] for i in range(J)])

c_res1 / σϵ, b_res1 / σϵ

(array([1.99998906e-11, 1.89473923e-11, 1.78947621e-11, 1.68421319e-11,
1.57895017e-11]),

array([ 0. , -1.05263158, -1.05263158, -1.05263158, -1.05263158]))

plt.title("more informative representation")
plt.plot(range(J), c_res1 / σϵ, label="c impulse response function")
plt.plot(range(J), b_res1 / σϵ, label="b impulse response function")
plt.legend()

<matplotlib.legend.Legend at 0x7fa0dda359d0>

The above two impulse response functions show that when the consumer has the information assumed in the more infor-
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mative representation (10.1), his response to receiving a positive shock of 𝜖𝑡 is to leave his consumption unchanged and
to save the entire amount of his extra income and then forever roll over the extra bonds that he holds.
To see this notice, that starting from next period on, his debt permanently decreases by 𝛽−1

c_res2 / σa, b_res2 / σa

(array([0.0975, 0.0975, 0.0975, 0.0975, 0.0975]),
array([ 0. , -0.95, -0.95, -0.95, -0.95]))

plt.title("innovations representation")
plt.plot(range(J), c_res2 / σa, label="c impulse response function")
plt.plot(range(J), b_res2 / σa, label="b impulse response function")
plt.plot([0, J-1], [0, 0], '--', color='k')
plt.legend()

<matplotlib.legend.Legend at 0x7fa0dd6a3410>

The above impulse responses show that when the consumer has only the information that is assumed to be available
under the innovations representation (10.2) for {𝑦𝑡 − 𝑦𝑡−1}, he responds to a positive 𝑎𝑡 by permanently increasing his
consumption.
He accomplishes this by consuming a fraction (1 − 𝛽2) of the increment 𝑎𝑡 to his nonfinancial income and saving the
rest, thereby lowering 𝑏𝑡+1 in order to finance the permanent increment in his consumption.
The preceding computations confirm what we had derived earlier using paper and pencil.
Now let’s simulate some paths of consumption and debt for our two types of consumers while always presenting both

10.9. Computations 167



Dynamic Linear Economies

types with the same {𝑦𝑡} path.

# Set time length for simulation
T = 100

x1, y1 = LSS1.simulate(ts_length=T)
plt.plot(range(T), y1[0, :], label="c")
plt.plot(range(T), x1[2, :], label="b")
plt.plot(range(T), x1[0, :], label="y")
plt.title("more informative representation")
plt.legend()

<matplotlib.legend.Legend at 0x7fa0dd08b410>

x2, y2 = LSS2.simulate(ts_length=T)
plt.plot(range(T), y2[0, :], label="c")
plt.plot(range(T), x2[2, :], label="b")
plt.plot(range(T), x2[0, :], label="y")
plt.title("innovations representation")
plt.legend()

<matplotlib.legend.Legend at 0x7fa0dd223810>
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10.10 Simulating Income Process and Two Associated Shock Pro-
cesses

We now form a single {𝑦𝑡}𝑇
𝑡=0 realization that we will use to simulate decisions associated with our two types of consumer.

We accomplish this in the following steps.
1. We form a {𝑦𝑡, 𝜖𝑡} realization by drawing a long simulation of {𝜖𝑡}𝑇

𝑡=0, where 𝑇 is a big integer, 𝜖𝑡 = 𝜎𝜖𝑣𝑡, 𝑣𝑡 is
a standard normal scalar, 𝑦0 = 100, and

𝑦𝑡+1 − 𝑦𝑡 = −𝛽−1𝜖𝑡 + 𝜖𝑡+1.

2. We take the {𝑦𝑡} realization generated in step 1 and form an innovation process {𝑎𝑡} from the formulas

𝑎0 = 0

𝑎𝑡 =
𝑡−1
∑
𝑗=0

𝛽𝑗(𝑦𝑡−𝑗 − 𝑦𝑡−𝑗−1) + 𝛽𝑡𝑎0, 𝑡 ≥ 1

3. We throw away the first 𝑆 observations and form a sample {𝑦𝑡, 𝜖𝑡, 𝑎𝑡}𝑇
𝑆+1 as the realization that we’ll use in the

following steps.
4. We use the step 3 realization to evaluate and simulate the decision rules for 𝑐𝑡, 𝑏𝑡 that Python has computed for

us above.
The above steps implement the experiment of comparing decisions made by two consumers having identical incomes at
each date but at each date having different information about their future incomes.
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10.11 Calculating Innovations in Another Way

Here we use formula (10.3) above to compute 𝑎𝑡+1 as a function of the history 𝜖𝑡+1, 𝜖𝑡, 𝜖𝑡−1, …
Thus, we compute

𝑎𝑡+1 = 𝛽𝑎𝑡 + 𝜖𝑡+1 − 𝛽−1𝜖𝑡
= 𝛽 (𝛽𝑎𝑡−1 + 𝜖𝑡 − 𝛽−1𝜖𝑡−1) + 𝜖𝑡+1 − 𝛽−1𝜖𝑡
= 𝛽2𝑎𝑡−1 + 𝛽 (𝜖𝑡 − 𝛽−1𝜖𝑡−1) + 𝜖𝑡+1 − 𝛽−1𝜖𝑡
= ⋮ ⋮

= 𝛽𝑡+1𝑎0 +
𝑡

∑
𝑗=0

𝛽𝑗 (𝜖𝑡+1−𝑗 − 𝛽−1𝜖𝑡−𝑗)

= 𝛽𝑡+1𝑎0 + 𝜖𝑡+1 + (𝛽 − 𝛽−1)
𝑡−1
∑
𝑗=0

𝛽𝑗𝜖𝑡−𝑗 − 𝛽𝑡−1𝜖0.

We can verify that we recover the same {𝑎𝑡} sequence computed earlier.

10.12 Another Invertibility Issue

This quantecon lecture contains another example of a shock-invertibility issue that is endemic to the LQ permanent income
or consumption smoothing model.
The technical issue discussed there is ultimately the source of the shock-invertibility issues discussed by Eric Leeper,
Todd Walker, and Susan Yang [Leeper et al., 2013] in their analysis of fiscal foresight.
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ELEVEN

CONSUMPTION SMOOTHING WITH COMPLETE AND INCOMPLETE
MARKETS

Contents

• Consumption Smoothing with Complete and Incomplete Markets
– Overview

– Background

– Linear State Space Version of Complete Markets Model

– Model 1 (Complete Markets)

– Model 2 (One-Period Risk-Free Debt Only)

In addition to what’s in Anaconda, this lecture uses the library:

!pip install --upgrade quantecon

11.1 Overview

This lecture describes two types of consumption-smoothing models.
• one is in the complete markets tradition of Kenneth Arrow
• the other is in the incomplete markets tradition of Hall [Hall, 1978]

Complete markets allow a consumer to buy and sell claims contingent on all possible states of the world.
Incomplete markets allow a consumer to buy and sell a limited set of securities, often only a single risk-free security.
Hall [Hall, 1978] worked in an incomplete markets tradition by assuming that the only asset that can be traded is a risk-free
one-period bond.
Hall assumed an exogenous stochastic process of nonfinancial income and an exogenous and time-invariant gross interest
rate on one-period risk-free debt that equals 𝛽−1, where 𝛽 ∈ (0, 1) is also a consumer’s intertemporal discount factor.
This is equivalent to saying that it costs 𝛽 of time 𝑡 consumption to buy one unit of consumption at time 𝑡 + 1 for sure.
So 𝛽 is the price of a one-period risk-free claim to consumption next period.
We preserve Hall’s assumption about the interest rate when we describe an incomplete markets version of our model.
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In addition, we extend Hall’s assumption about the risk-free interest rate to an appropriate counterpart when we create
another model in which there are markets in a complete array of one-period Arrow state-contingent securities.
We’ll consider two closely related alternative assumptions about the consumer’s exogenous nonfinancial income process:

• that it is generated by a finite 𝑁 state Markov chain (setting 𝑁 = 2 most of the time in this lecture)
• that it is described by a linear state space model with a continuous state vector in ℝ𝑛 driven by a Gaussian vector
IID shock process

We’ll spend most of this lecture studying the finite-state Markov specification, but will begin by studying the linear state
space specification because it is so closely linked to earlier lectures.
Let’s start with some imports:

import numpy as np
import quantecon as qe
import matplotlib.pyplot as plt
import scipy.linalg as la

11.1.1 Relationship to Other Lectures

This lecture can be viewed as a followup to Optimal Savings II: LQ Techniques
This lecture is also a prologomenon to a lecture on tax-smoothing Tax Smoothing with Complete and Incomplete Markets

11.2 Background

Outcomes in consumption-smoothing models emerge from two sources:
• a consumer who wants to maximize an intertemporal objective function that expresses its preference for paths of
consumption that are smooth in the sense of varying as little as possible both across time and across realizedMarkov
states

• opportunities that allow the consumer to transform an erratic nonfinancial income process into a smoother con-
sumption process by buying and selling one or more financial securities

In the complete markets version, each period the consumer can buy or sell a complete set of one-period ahead state-
contingent securities whose payoffs depend on next period’s realization of the Markov state.

• In the two-state Markov chain case, two such securities are traded each period.
• In an 𝑁 state Markov state version, 𝑁 such securities are traded each period.
• In a continuous state Markov state version, a continuum of such securities is traded each period.

These state-contingent securities are commonly called Arrow securities, after Kenneth Arrow.
In the incomplete markets version, the consumer can buy and sell only one security each period, a risk-free one-period
bond with gross one-period return 𝛽−1.
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11.3 Linear State Space Version of Complete Markets Model

We’ll study a complete markets model adapted to a setting with a continuous Markov state like that in the first lecture on
the permanent income model.
In that model

• a consumer can trade only a single risk-free one-period bond bearing gross one-period risk-free interest rate equal
to 𝛽−1.

• a consumer’s exogenous nonfinancial income is governed by a linear state space model driven by Gaussian shocks,
the kind of model studied in an earlier lecture about linear state space models.

Let’s write down a complete markets counterpart of that model.
Suppose that nonfinancial income is governed by the state space system

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝑆𝑦𝑥𝑡

where 𝑥𝑡 is an 𝑛 × 1 vector and 𝑤𝑡+1 ∼ 𝑁(0, 𝐼) is IID over time.
We want a natural counterpart of the Hall assumption that the one-period risk-free gross interest rate is 𝛽−1.
We make the good guess that prices of one-period ahead Arrow securities are described by the pricing kernel

𝑞𝑡+1(𝑥𝑡+1 | 𝑥𝑡) = 𝛽𝜙(𝑥𝑡+1 | 𝐴𝑥𝑡, 𝐶𝐶′) (11.1)

where 𝜙(⋅ | 𝜇, Σ) is a multivariate Gaussian distribution with mean vector 𝜇 and covariance matrix Σ.
With the pricing kernel 𝑞𝑡+1(𝑥𝑡+1 | 𝑥𝑡) in hand, we can price claims to consumption at time 𝑡 + 1 consumption that pay
off when 𝑥𝑡+1 ∈ 𝑆 at time 𝑡 + 1:

∫
𝑆

𝑞𝑡+1(𝑥𝑡+1 | 𝑥𝑡)𝑑𝑥𝑡+1

where 𝑆 is a subset of ℝ𝑛.
The price∫𝑆 𝑞𝑡+1(𝑥𝑡+1 | 𝑥𝑡)𝑑𝑥𝑡+1 of such a claim depends on state 𝑥𝑡 because the prices of the 𝑥𝑡+1-contingent securities
depend on 𝑥𝑡 through the pricing kernel 𝑞(𝑥𝑡+1 | 𝑥𝑡).
Let 𝑏(𝑥𝑡+1) be a vector of state-contingent debt due at 𝑡 + 1 as a function of the 𝑡 + 1 state 𝑥𝑡+1.
Using the pricing kernel assumed in (11.1), the value at 𝑡 of 𝑏(𝑥𝑡+1) is evidently

𝛽 ∫ 𝑏(𝑥𝑡+1)𝜙(𝑥𝑡+1 | 𝐴𝑥𝑡, 𝐶𝐶′)𝑑𝑥𝑡+1 = 𝛽𝔼𝑡𝑏𝑡+1

In our complete markets setting, the consumer faces a sequence of budget constraints

𝑐𝑡 + 𝑏𝑡 = 𝑦𝑡 + 𝛽𝔼𝑡𝑏𝑡+1, 𝑡 ≥ 0

Please note that

𝛽𝐸𝑡𝑏𝑡+1 = 𝛽 ∫ 𝜙𝑡+1(𝑥𝑡+1|𝐴𝑥𝑡, 𝐶𝐶′)𝑏𝑡+1(𝑥𝑡+1)𝑑𝑥𝑡+1

or

𝛽𝐸𝑡𝑏𝑡+1 = ∫ 𝑞𝑡+1(𝑥𝑡+1|𝑥𝑡)𝑏𝑡+1(𝑥𝑡+1)𝑑𝑥𝑡+1
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which verifies that 𝛽𝐸𝑡𝑏𝑡+1 is the value of time 𝑡 + 1 state-contingent claims on time 𝑡 + 1 consumption issued by the
consumer at time 𝑡
We can solve the time 𝑡 budget constraint forward to obtain

𝑏𝑡 = 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗(𝑦𝑡+𝑗 − 𝑐𝑡+𝑗)

The consumer cares about the expected value of
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡), 0 < 𝛽 < 1

In the incomplete markets version of the model, we assumed that 𝑢(𝑐𝑡) = −(𝑐𝑡 − 𝛾)2, so that the above utility functional
became

−
∞

∑
𝑡=0

𝛽𝑡(𝑐𝑡 − 𝛾)2, 0 < 𝛽 < 1

But in the complete markets version, it is tractable to assume a more general utility function that satisfies 𝑢′ > 0 and
𝑢″ < 0.
First-order conditions for the consumer’s problem with complete markets and our assumption about Arrow securities
prices are

𝑢′(𝑐𝑡+1) = 𝑢′(𝑐𝑡) for all 𝑡 ≥ 0

which implies 𝑐𝑡 = ̄𝑐 for some ̄𝑐.
So it follows that

𝑏𝑡 = 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗(𝑦𝑡+𝑗 − ̄𝑐)

or

𝑏𝑡 = 𝑆𝑦(𝐼 − 𝛽𝐴)−1𝑥𝑡 − 1
1 − 𝛽 ̄𝑐 (11.2)

where ̄𝑐 satisfies

𝑏̄0 = 𝑆𝑦(𝐼 − 𝛽𝐴)−1𝑥0 − 1
1 − 𝛽 ̄𝑐 (11.3)

where 𝑏̄0 is an initial level of the consumer’s debt due at time 𝑡 = 0, specified as a parameter of the problem.
Thus, in the complete markets version of the consumption-smoothing model, 𝑐𝑡 = ̄𝑐, ∀𝑡 ≥ 0 is determined by (11.3) and
the consumer’s debt is the fixed function of the state 𝑥𝑡 described by (11.2).
Please recall that in the LQ permanent income model studied in permanent income model, the state is 𝑥𝑡, 𝑏𝑡, where 𝑏𝑡 is
a complicated function of past state vectors 𝑥𝑡−𝑗.
Notice that in contrast to that incomplete markets model, at time 𝑡 the state vector is 𝑥𝑡 alone in our complete markets
model.
Here’s an example that shows how in this setting the availability of insurance against fluctuating nonfinancial income
allows the consumer completely to smooth consumption across time and across states of the world
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def complete_ss(β, b0, x0, A, C, S_y, T=12):
"""
Computes the path of consumption and debt for the previously described
complete markets model where exogenous income follows a linear
state space
"""
# Create a linear state space for simulation purposes
# This adds "b" as a state to the linear state space system
# so that setting the seed places shocks in same place for
# both the complete and incomplete markets economy
# Atilde = np.vstack([np.hstack([A, np.zeros((A.shape[0], 1))]),
# np.zeros((1, A.shape[1] + 1))])
# Ctilde = np.vstack([C, np.zeros((1, 1))])
# S_ytilde = np.hstack([S_y, np.zeros((1, 1))])

lss = qe.LinearStateSpace(A, C, S_y, mu_0=x0)

# Add extra state to initial condition
# x0 = np.hstack([x0, np.zeros(1)])

# Compute the (I - β * A)^{-1}
rm = la.inv(np.eye(A.shape[0]) - β * A)

# Constant level of consumption
cbar = (1 - β) * (S_y @ rm @ x0 - b0)
c_hist = np.full(T, cbar)

# Debt
x_hist, y_hist = lss.simulate(T)
b_hist = np.squeeze(S_y @ rm @ x_hist - cbar / (1 - β))

return c_hist, b_hist, np.squeeze(y_hist), x_hist

# Define parameters
N_simul = 80
α, ρ1, ρ2 = 10.0, 0.9, 0.0
σ = 1.0

A = np.array([[1., 0., 0.],
[α, ρ1, ρ2],
[0., 1., 0.]])

C = np.array([[0.], [σ], [0.]])
S_y = np.array([[1, 1.0, 0.]])
β, b0 = 0.95, -10.0
x0 = np.array([1.0, α / (1 - ρ1), α / (1 - ρ1)])

# Do simulation for complete markets
s = np.random.randint(0, 10000)
np.random.seed(s) # Seeds get set the same for both economies
out = complete_ss(β, b0, x0, A, C, S_y, 80)
c_hist_com, b_hist_com, y_hist_com, x_hist_com = out

fig, ax = plt.subplots(1, 2, figsize=(14, 4))

# Consumption plots

(continues on next page)
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(continued from previous page)

ax[0].set_title('Consumption and income')
ax[0].plot(np.arange(N_simul), c_hist_com, label='consumption')
ax[0].plot(np.arange(N_simul), y_hist_com, label='income', alpha=.6, linestyle='--')
ax[0].legend()
ax[0].set_xlabel('Periods')
ax[0].set_ylim([80, 120])

# Debt plots
ax[1].set_title('Debt and income')
ax[1].plot(np.arange(N_simul), b_hist_com, label='debt')
ax[1].plot(np.arange(N_simul), y_hist_com, label='Income', alpha=.6, linestyle='--')
ax[1].legend()
ax[1].axhline(0, color='k')
ax[1].set_xlabel('Periods')

plt.show()

11.3.1 Interpretation of Graph

In the above graph, please note that:
• nonfinancial income fluctuates in a stationary manner.
• consumption is completely constant.
• the consumer’s debt fluctuates in a stationary manner; in fact, in this case, because nonfinancial income is a first-
order autoregressive process, the consumer’s debt is an exact affine function (meaning linear plus a constant) of the
consumer’s nonfinancial income.

11.3.2 Incomplete Markets Version

The incomplete markets version of the model with nonfinancial income being governed by a linear state space system is
described in permanent income model.
In that incomplete markerts setting, consumption follows a random walk and the consumer’s debt follows a process with
a unit root.
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11.3.3 Finite State Markov Income Process

We now turn to a finite-stateMarkov version of themodel in which the consumer’s nonfinancial income is an exact function
of a Markov state that takes one of 𝑁 values.
We’ll start with a setting in which in each version of our consumption-smoothing model, nonfinancial income is governed
by a two-state Markov chain (it’s easy to generalize this to an 𝑁 state Markov chain).
In particular, the state 𝑠𝑡 ∈ {1, 2} follows a Markov chain with transition probability matrix

𝑃𝑖𝑗 = ℙ{𝑠𝑡+1 = 𝑗 | 𝑠𝑡 = 𝑖}

where ℙ means conditional probability
Nonfinancial income {𝑦𝑡} obeys

𝑦𝑡 = { ̄𝑦1 if 𝑠𝑡 = 1
̄𝑦2 if 𝑠𝑡 = 2

A consumer wishes to maximize

𝔼 [
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)] where 𝑢(𝑐𝑡) = −(𝑐𝑡 − 𝛾)2 and 0 < 𝛽 < 1 (11.4)

Here 𝛾 > 0 is a bliss level of consumption

11.3.4 Market Structure

Our complete and incomplete markets models differ in how thoroughly the market structure allows a consumer to transfer
resources across time and Markov states, there being more transfer opportunities in the complete markets setting than in
the incomplete markets setting.
Watch how these differences in opportunities affect

• how smooth consumption is across time and Markov states
• how the consumer chooses to make his levels of indebtedness behave over time and across Markov states

11.4 Model 1 (Complete Markets)

At each date 𝑡 ≥ 0, the consumer trades a full array of one-period ahead Arrow securities.
We assume that prices of these securities are exogenous to the consumer.
Exogenous means that they are unaffected by the consumer’s decisions.
In Markov state 𝑠𝑡 at time 𝑡, one unit of consumption in state 𝑠𝑡+1 at time 𝑡 + 1 costs 𝑞(𝑠𝑡+1 | 𝑠𝑡) units of the time 𝑡
consumption good.
The prices 𝑞(𝑠𝑡+1 | 𝑠𝑡) are given and can be organized into a matrix 𝑄 with 𝑄𝑖𝑗 = 𝑞(𝑗|𝑖)
At time 𝑡 = 0, the consumer starts with an inherited level of debt due at time 0 of 𝑏0 units of time 0 consumption goods.
The consumer’s budget constraint at 𝑡 ≥ 0 in Markov state 𝑠𝑡 is

𝑐𝑡 + 𝑏𝑡 ≤ 𝑦(𝑠𝑡) + ∑
𝑗

𝑞(𝑗 | 𝑠𝑡) 𝑏𝑡+1(𝑗 | 𝑠𝑡) (11.5)
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where 𝑏𝑡 is the consumer’s one-period debt that falls due at time 𝑡 and 𝑏𝑡+1(𝑗 | 𝑠𝑡) are the consumer’s time 𝑡 sales of the
time 𝑡 + 1 consumption good in Markov state 𝑗.
Thus

• 𝑞(𝑗 | 𝑠𝑡)𝑏𝑡+1(𝑗 | 𝑠𝑡) is a source of time 𝑡 financial income for the consumer in Markov state 𝑠𝑡

• 𝑏𝑡 ≡ 𝑏𝑡(𝑗 | 𝑠𝑡−1) is a source of time 𝑡 expenditures for the consumer when 𝑠𝑡 = 𝑗
Remark: We are ignoring an important technicality here, namely, that the consumer’s choice of 𝑏𝑡+1(𝑗| 𝑠𝑡) must respect
so-called natural debt limits that assure that it is feasible for the consumer to repay debts due even if he consumers zero
forevermore. We shall discuss such debt limits in another lecture.
A natural analog of Hall’s assumption that the one-period risk-free gross interest rate is 𝛽−1 is

𝑞(𝑗 | 𝑖) = 𝛽𝑃𝑖𝑗 (11.6)

To understand how this is a natural analogue, observe that in state 𝑖 it costs∑𝑗 𝑞(𝑗 | 𝑖) to purchase one unit of consumption
next period for sure, i.e., meaning no matter what Markov state 𝑗 occurs at 𝑡 + 1.
Hence the implied price of a risk-free claim on one unit of consumption next period is

∑
𝑗

𝑞(𝑗 | 𝑖) = ∑
𝑗

𝛽𝑃𝑖𝑗 = 𝛽

This confirms the sense in which (11.6) is a natural counterpart to Hall’s assumption that the risk-free one-period gross
interest rate is 𝑅 = 𝛽−1.
It is timely please to recall that the gross one-period risk-free interest rate is the reciprocal of the price at time 𝑡 of a
risk-free claim on one unit of consumption tomorrow.
First-order necessary conditions for maximizing the consumer’s expected utility subject to the sequence of budget con-
straints (11.5) are

𝛽 𝑢′(𝑐𝑡+1)
𝑢′(𝑐𝑡)

ℙ{𝑠𝑡+1 | 𝑠𝑡} = 𝑞(𝑠𝑡+1 | 𝑠𝑡)

for all 𝑠𝑡, 𝑠𝑡+1 or, under our assumption (11.6) about Arrow security prices,

𝑐𝑡+1 = 𝑐𝑡 (11.7)

Thus, our consumer sets 𝑐𝑡 = ̄𝑐 for all 𝑡 ≥ 0 for some value ̄𝑐 that it is our job now to determine along with values for
𝑏𝑡+1(𝑗|𝑠𝑡 = 𝑖) for 𝑖 = 1, 2 and 𝑗 = 1, 2.
We’ll use a guess and verify method to determine these objects
Guess: We’ll make the plausible guess that

𝑏𝑡+1(𝑠𝑡+1 = 𝑗 | 𝑠𝑡 = 𝑖) = 𝑏(𝑗), 𝑖 = 1, 2; 𝑗 = 1, 2 (11.8)

so that the amount borrowed today depends only on tomorrow’sMarkov state. (Why is this is a plausible guess?)
To determine ̄𝑐, we shall deduce implications of the consumer’s budget constraints in each Markov state today and our
guess (11.8) about the consumer’s debt level choices.
For 𝑡 ≥ 1, these imply

̄𝑐 + 𝑏(1) = 𝑦(1) + 𝑞(1 | 1)𝑏(1) + 𝑞(2 | 1)𝑏(2)
̄𝑐 + 𝑏(2) = 𝑦(2) + 𝑞(1 | 2)𝑏(1) + 𝑞(2 | 2)𝑏(2) (11.9)

or

[𝑏(1)
𝑏(2)] + [ ̄𝑐

̄𝑐] = [𝑦(1)
𝑦(2)] + 𝛽 [𝑃11 𝑃12

𝑃21 𝑃22
] [𝑏(1)

𝑏(2)]
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These are 2 equations in the 3 unknowns ̄𝑐, 𝑏(1), 𝑏(2)
To get a third equation, we assume that at time 𝑡 = 0, 𝑏0 is debt due; and we assume that at time 𝑡 = 0, the Markov state
𝑠0 = 1
(We could instead have assumed that at time 𝑡 = 0 the Markov state 𝑠0 = 2, which would affect our answer as we shall
see)
Since we have assumed that 𝑠0 = 1, the budget constraint at time 𝑡 = 0 is

̄𝑐 + 𝑏0 = 𝑦(1) + 𝑞(1 | 1)𝑏(1) + 𝑞(2 | 1)𝑏(2) (11.10)

where 𝑏0 is the (exogenous) debt the consumer is assumed to bring into period 0
If we substitute (11.10) into the first equation of (11.9) and rearrange, we discover that

𝑏(1) = 𝑏0 (11.11)

We can then use the second equation of (11.9) to deduce the restriction

𝑦(1) − 𝑦(2) + [𝑞(1 | 1) − 𝑞(1 | 2) − 1]𝑏0 + [𝑞(2 | 1) + 1 − 𝑞(2 | 2)]𝑏(2) = 0, (11.12)

an equation that we can solve for the unknown 𝑏(2).
Knowing 𝑏(1) and 𝑏(2), we can solve equation (11.10) for the constant level of consumption ̄𝑐.

11.4.1 Key Outcomes

The preceding calculations indicate that in the complete markets version of our model, we obtain the following striking
results:

• The consumer chooses to make consumption perfectly constant across time and across Markov states.
• State-contingent debt purchases 𝑏𝑡+1(𝑠𝑡+1 = 𝑗|𝑠𝑡 = 𝑖) depend only on 𝑗
• If the initial Markov state is 𝑠0 = 𝑗 and initial consumer debt is 𝑏0, then debt in Markov state 𝑗 satisfies 𝑏(𝑗) = 𝑏0

To summarize what we have achieved up to now, we have computed the constant level of consumption ̄𝑐 and indicated
how that level depends on the underlying specifications of preferences, Arrow securities prices, the stochastic process of
exogenous nonfinancial income, and the initial debt level 𝑏0

• The consumer’s debt neither accumulates, nor decumulates, nor drifts – instead, the debt level each period is an
exact function of the Markov state, so in the two-state Markov case, it switches between two values.

• We have verified guess (11.8).
• When the state 𝑠𝑡 returns to the initial state 𝑠0, debt returns to the initial debt level.
• Debt levels in all other states depend on virtually all remaining parameters of the model.

11.4.2 Code

Here’s some code that, among other things, contains a function called consumption_complete().
This function computes {𝑏(𝑖)}𝑁

𝑖=1, ̄𝑐 as outcomes given a set of parameters for the general case with 𝑁 Markov states
under the assumption of complete markets
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class ConsumptionProblem:
"""
The data for a consumption problem, including some default values.
"""

def __init__(self,
β=.96,
y=[2, 1.5],
b0=3,
P=[[.8, .2],

[.4, .6]],
init=0):

"""
Parameters
----------

β : discount factor
y : list containing the two income levels
b0 : debt in period 0 (= initial state debt level)
P : 2x2 transition matrix
init : index of initial state s0
"""
self.β = β
self.y = np.asarray(y)
self.b0 = b0
self.P = np.asarray(P)
self.init = init

def simulate(self, N_simul=80, random_state=1):
"""
Parameters
----------

N_simul : number of periods for simulation
random_state : random state for simulating Markov chain
"""
# For the simulation define a quantecon MC class
mc = qe.MarkovChain(self.P)
s_path = mc.simulate(N_simul, init=self.init, random_state=random_state)

return s_path

def consumption_complete(cp):
"""
Computes endogenous values for the complete market case.

Parameters
----------

cp : instance of ConsumptionProblem

Returns
-------

c_bar : constant consumption
b : optimal debt in each state

(continues on next page)

180 Chapter 11. Consumption Smoothing with Complete and Incomplete Markets



Dynamic Linear Economies

(continued from previous page)

associated with the price system

Q = β * P
"""
β, P, y, b0, init = cp.β, cp.P, cp.y, cp.b0, cp.init # Unpack

Q = β * P # assumed price system

# construct matrices of augmented equation system
n = P.shape[0] + 1

y_aug = np.empty((n, 1))
y_aug[0, 0] = y[init] - b0
y_aug[1:, 0] = y

Q_aug = np.zeros((n, n))
Q_aug[0, 1:] = Q[init, :]
Q_aug[1:, 1:] = Q

A = np.zeros((n, n))
A[:, 0] = 1
A[1:, 1:] = np.eye(n-1)

x = np.linalg.inv(A - Q_aug) @ y_aug

c_bar = x[0, 0]
b = x[1:, 0]

return c_bar, b

def consumption_incomplete(cp, s_path):
"""
Computes endogenous values for the incomplete market case.

Parameters
----------

cp : instance of ConsumptionProblem
s_path : the path of states
"""
β, P, y, b0 = cp.β, cp.P, cp.y, cp.b0 # Unpack

N_simul = len(s_path)

# Useful variables
n = len(y)
y.shape = (n, 1)
v = np.linalg.inv(np.eye(n) - β * P) @ y

# Store consumption and debt path
b_path, c_path = np.ones(N_simul+1), np.ones(N_simul)
b_path[0] = b0

# Optimal decisions from (12) and (13)

(continues on next page)

11.4. Model 1 (Complete Markets) 181



Dynamic Linear Economies

(continued from previous page)

db = ((1 - β) * v - y) / β

for i, s in enumerate(s_path):
c_path[i] = (1 - β) * (v - np.full((n, 1), b_path[i]))[s, 0]
b_path[i + 1] = b_path[i] + db[s, 0]

return c_path, b_path[:-1], y[s_path]

Let’s test by checking that ̄𝑐 and 𝑏2 satisfy the budget constraint

cp = ConsumptionProblem()
c_bar, b = consumption_complete(cp)
np.isclose(c_bar + b[1] - cp.y[1] - (cp.β * cp.P)[1, :] @ b, 0)

True

Below, we’ll take the outcomes produced by this code – in particular the implied consumption and debt paths – and
compare them with outcomes from an incomplete markets model in the spirit of Hall [Hall, 1978]

11.5 Model 2 (One-Period Risk-Free Debt Only)

This is a version of the original model of Hall (1978) in which the consumer’s ability to substitute intertemporally is
constrained by his ability to buy or sell only one security, a risk-free one-period bond bearing a constant gross interest
rate that equals 𝛽−1.
Given an initial debt 𝑏0 at time 0, the consumer faces a sequence of budget constraints

𝑐𝑡 + 𝑏𝑡 = 𝑦𝑡 + 𝛽𝑏𝑡+1, 𝑡 ≥ 0

where 𝛽 is the price at time 𝑡 of a risk-free claim on one unit of time consumption at time 𝑡 + 1.
First-order conditions for the consumer’s problem are

∑
𝑗

𝑢′(𝑐𝑡+1,𝑗)𝑃𝑖𝑗 = 𝑢′(𝑐𝑡,𝑖)

For our assumed quadratic utility function this implies

∑
𝑗

𝑐𝑡+1,𝑗𝑃𝑖𝑗 = 𝑐𝑡,𝑖 (11.13)

which for our finite-state Markov setting is Hall’s (1978) conclusion that consumption follows a random walk.
As we saw in our first lecture on the permanent income model, this leads to

𝑏𝑡 = 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗 − (1 − 𝛽)−1𝑐𝑡 (11.14)

and

𝑐𝑡 = (1 − 𝛽) [𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗 − 𝑏𝑡] (11.15)

Equation (11.15) expresses 𝑐𝑡 as a net interest rate factor 1−𝛽 times the sum of the expected present value of nonfinancial
income 𝔼𝑡 ∑∞

𝑗=0 𝛽𝑗𝑦𝑡+𝑗 and financial wealth −𝑏𝑡.
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Substituting (11.15) into the one-period budget constraint and rearranging leads to

𝑏𝑡+1 − 𝑏𝑡 = 𝛽−1 [(1 − 𝛽)𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗 − 𝑦𝑡] (11.16)

Now let’s calculate the key term 𝔼𝑡 ∑∞
𝑗=0 𝛽𝑗𝑦𝑡+𝑗 in our finite Markov chain setting.

Define the expected discounted present value of non-financial income

𝑣𝑡 ∶= 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗

which in the spirit of dynamic programming we can write as a Bellman equation

𝑣𝑡 ∶= 𝑦𝑡 + 𝛽𝔼𝑡𝑣𝑡+1

In our two-state Markov chain setting, 𝑣𝑡 = 𝑣(1) when 𝑠𝑡 = 1 and 𝑣𝑡 = 𝑣(2) when 𝑠𝑡 = 2.
Therefore, we can write our Bellman equation as

𝑣(1) = 𝑦(1) + 𝛽𝑃11𝑣(1) + 𝛽𝑃12𝑣(2)
𝑣(2) = 𝑦(2) + 𝛽𝑃21𝑣(1) + 𝛽𝑃22𝑣(2)

or

⃗𝑣 = ⃗𝑦 + 𝛽𝑃 ⃗𝑣

where ⃗𝑣 = [𝑣(1)
𝑣(2)] and ⃗𝑦 = [𝑦(1)

𝑦(2)].

We can also write the last expression as

⃗𝑣 = (𝐼 − 𝛽𝑃)−1 ⃗𝑦

In our finite Markov chain setting, from expression (11.15), consumption at date 𝑡 when debt is 𝑏𝑡 and the Markov state
today is 𝑠𝑡 = 𝑖 is evidently

𝑐(𝑏𝑡, 𝑖) = (1 − 𝛽) ([(𝐼 − 𝛽𝑃)−1 ⃗𝑦]𝑖 − 𝑏𝑡) (11.17)

and the increment to debt is

𝑏𝑡+1 − 𝑏𝑡 = 𝛽−1[(1 − 𝛽)𝑣(𝑖) − 𝑦(𝑖)] (11.18)

11.5.1 Summary of Outcomes

In contrast to outcomes in the complete markets model, in the incomplete markets model
• consumption drifts over time as a random walk; the level of consumption at time 𝑡 depends on the level of debt that
the consumer brings into the period as well as the expected discounted present value of nonfinancial income at 𝑡.

• the consumer’s debt drifts upward over time in response to low realizations of nonfinancial income and drifts down-
ward over time in response to high realizations of nonfinancial income.

• the drift over time in the consumer’s debt and the dependence of current consumption on today’s debt level account
for the drift over time in consumption.
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11.5.2 The Incomplete Markets Model

The code above also contains a function called consumption_incomplete() that uses (11.17) and (11.18) to
• simulate paths of 𝑦𝑡, 𝑐𝑡, 𝑏𝑡+1

• plot these against values of ̄𝑐, 𝑏(𝑠1), 𝑏(𝑠2) found in a corresponding complete markets economy
Let’s try this, using the same parameters in both complete and incomplete markets economies

cp = ConsumptionProblem()
s_path = cp.simulate()
N_simul = len(s_path)

c_bar, debt_complete = consumption_complete(cp)

c_path, debt_path, y_path = consumption_incomplete(cp, s_path)

fig, ax = plt.subplots(1, 2, figsize=(14, 4))

ax[0].set_title('Consumption paths')
ax[0].plot(np.arange(N_simul), c_path, label='incomplete market')
ax[0].plot(np.arange(N_simul), np.full(N_simul, c_bar),

label='complete market')
ax[0].plot(np.arange(N_simul), y_path, label='income', alpha=.6, ls='--')
ax[0].legend()
ax[0].set_xlabel('Periods')

ax[1].set_title('Debt paths')
ax[1].plot(np.arange(N_simul), debt_path, label='incomplete market')
ax[1].plot(np.arange(N_simul), debt_complete[s_path],

label='complete market')
ax[1].plot(np.arange(N_simul), y_path, label='income', alpha=.6, ls='--')
ax[1].legend()
ax[1].axhline(0, color='k', ls='--')
ax[1].set_xlabel('Periods')

plt.show()

In the graph on the left, for the same sample path of nonfinancial income 𝑦𝑡, notice that
• consumption is constant when there are complete markets, but takes a random walk in the incomplete markets
version of the model.
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• the consumer’s debt oscillates between two values that are functions of the Markov state in the complete markets
model, while the consumer’s debt drifts in a “unit root” fashion in the incomplete markets economy.

11.5.3 A sequel

In tax smoothing with complete and incomplete markets, we reinterpret the mathematics and Python code presented in this
lecture in order to construct tax-smoothing models in the incomplete markets tradition of Barro [Barro, 1979] as well as
in the complete markets tradition of Lucas and Stokey [Lucas and Stokey, 1983].
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CHAPTER

TWELVE

TAX SMOOTHING WITH COMPLETE AND INCOMPLETE MARKETS

Contents

• Tax Smoothing with Complete and Incomplete Markets
– Overview

– Tax Smoothing with Complete Markets

– Returns on State-Contingent Debt

– More Finite Markov Chain Tax-Smoothing Examples

In addition to what’s in Anaconda, this lecture uses the library:

!pip install --upgrade quantecon

12.1 Overview

This lecture describes tax-smoothing models that are counterparts to consumption-smoothing models in Consumption
Smoothing with Complete and Incomplete Markets.

• one is in the complete markets tradition of Lucas and Stokey [Lucas and Stokey, 1983].
• the other is in the incomplete markets tradition of Barro [Barro, 1979].

Complete markets allow a government to buy or sell claims contingent on all possible Markov states.
Incomplete markets allow a government to buy or sell only a limited set of securities, often only a single risk-free security.
Barro [Barro, 1979] worked in an incomplete markets tradition by assuming that the only asset that can be traded is a
risk-free one period bond.
In his consumption-smoothing model, Hall [Hall, 1978] had assumed an exogenous stochastic process of nonfinancial
income and an exogenous gross interest rate on one period risk-free debt that equals 𝛽−1, where 𝛽 ∈ (0, 1) is also a
consumer’s intertemporal discount factor.
Barro [Barro, 1979] made an analogous assumption about the risk-free interest rate in a tax-smoothing model that turns
out to have the same mathematical structure as Hall’s consumption-smoothing model.
To get Barro’s model from Hall’s, all we have to do is to rename variables.
We maintain Hall’s and Barro’s assumption about the interest rate when we describe an incomplete markets version of
our model.
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In addition, we extend their assumption about the interest rate to an appropriate counterpart to create a “complete markets”
model in the style of Lucas and Stokey [Lucas and Stokey, 1983].

12.1.1 Isomorphism between Consumption and Tax Smoothing

For each version of a consumption-smoothing model, a tax-smoothing counterpart can be obtained simply by relabeling
• consumption as tax collections
• a consumer’s one-period utility function as a government’s one-period loss function from collecting taxes that impose
deadweight welfare losses

• a consumer’s nonfinancial income as a government’s purchases
• a consumer’s debt as a government’s assets

Thus, we can convert the consumption-smoothingmodels in lectureConsumption Smoothing with Complete and Incomplete
Markets into tax-smoothing models by setting 𝑐𝑡 = 𝑇𝑡, 𝑦𝑡 = 𝐺𝑡, and −𝑏𝑡 = 𝑎𝑡, where 𝑇𝑡 is total tax collections, {𝐺𝑡} is
an exogenous government expenditures process, and 𝑎𝑡 is the government’s holdings of one-period risk-free bonds coming
maturing at the due at the beginning of time 𝑡.
For elaborations on this theme, please see Optimal Savings II: LQ Techniques and later parts of this lecture.
We’ll spend most of this lecture studying acquire finite-state Markov specification, but will also treat the linear state space
specification.

Link to History

For those who love history, President Thomas Jefferson’s Secretary of Treasury Albert Gallatin (1807) [Gallatin, 1837]
seems to have prescribed policies that come from Barro’s model [Barro, 1979]
Let’s start with some standard imports:

import numpy as np
import quantecon as qe
import matplotlib.pyplot as plt

To exploit the isomorphism between consumption-smoothing and tax-smoothing models, we simply use code from Con-
sumption Smoothing with Complete and Incomplete Markets

12.1.2 Code

Among other things, this code contains a function called consumption_complete().
This function computes {𝑏(𝑖)}𝑁

𝑖=1, ̄𝑐 as outcomes given a set of parameters for the general case with 𝑁 Markov states
under the assumption of complete markets

class ConsumptionProblem:
"""
The data for a consumption problem, including some default values.
"""

def __init__(self,
β=.96,
y=[2, 1.5],
b0=3,

(continues on next page)
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(continued from previous page)

P=[[.8, .2],
[.4, .6]],

init=0):
"""
Parameters
----------

β : discount factor
y : list containing the two income levels
b0 : debt in period 0 (= initial state debt level)
P : 2x2 transition matrix
init : index of initial state s0
"""
self.β = β
self.y = np.asarray(y)
self.b0 = b0
self.P = np.asarray(P)
self.init = init

def simulate(self, N_simul=80, random_state=1):
"""
Parameters
----------

N_simul : number of periods for simulation
random_state : random state for simulating Markov chain
"""
# For the simulation define a quantecon MC class
mc = qe.MarkovChain(self.P)
s_path = mc.simulate(N_simul, init=self.init, random_state=random_state)

return s_path

def consumption_complete(cp):
"""
Computes endogenous values for the complete market case.

Parameters
----------

cp : instance of ConsumptionProblem

Returns
-------

c_bar : constant consumption
b : optimal debt in each state

associated with the price system

Q = β * P
"""
β, P, y, b0, init = cp.β, cp.P, cp.y, cp.b0, cp.init # Unpack

Q = β * P # assumed price system

(continues on next page)

12.1. Overview 189



Dynamic Linear Economies
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# construct matrices of augmented equation system
n = P.shape[0] + 1

y_aug = np.empty((n, 1))
y_aug[0, 0] = y[init] - b0
y_aug[1:, 0] = y

Q_aug = np.zeros((n, n))
Q_aug[0, 1:] = Q[init, :]
Q_aug[1:, 1:] = Q

A = np.zeros((n, n))
A[:, 0] = 1
A[1:, 1:] = np.eye(n-1)

x = np.linalg.inv(A - Q_aug) @ y_aug

c_bar = x[0, 0]
b = x[1:, 0]

return c_bar, b

def consumption_incomplete(cp, s_path):
"""
Computes endogenous values for the incomplete market case.

Parameters
----------

cp : instance of ConsumptionProblem
s_path : the path of states
"""
β, P, y, b0 = cp.β, cp.P, cp.y, cp.b0 # Unpack

N_simul = len(s_path)

# Useful variables
n = len(y)
y.shape = (n, 1)
v = np.linalg.inv(np.eye(n) - β * P) @ y

# Store consumption and debt path
b_path, c_path = np.ones(N_simul+1), np.ones(N_simul)
b_path[0] = b0

# Optimal decisions from (12) and (13)
db = ((1 - β) * v - y) / β

for i, s in enumerate(s_path):
c_path[i] = (1 - β) * (v - np.full((n, 1), b_path[i]))[s, 0]
b_path[i + 1] = b_path[i] + db[s, 0]

return c_path, b_path[:-1], y[s_path]
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12.1.3 Revisiting the consumption-smoothing model

The code above also contains a function called consumption_incomplete() that uses (11.17) and (11.18) to
• simulate paths of 𝑦𝑡, 𝑐𝑡, 𝑏𝑡+1

• plot these against values of ̄𝑐, 𝑏(𝑠1), 𝑏(𝑠2) found in a corresponding complete markets economy
Let’s try this, using the same parameters in both complete and incomplete markets economies

cp = ConsumptionProblem()
s_path = cp.simulate()
N_simul = len(s_path)

c_bar, debt_complete = consumption_complete(cp)

c_path, debt_path, y_path = consumption_incomplete(cp, s_path)

fig, ax = plt.subplots(1, 2, figsize=(14, 4))

ax[0].set_title('Consumption paths')
ax[0].plot(np.arange(N_simul), c_path, label='incomplete market')
ax[0].plot(np.arange(N_simul), np.full(N_simul, c_bar), label='complete market')
ax[0].plot(np.arange(N_simul), y_path, label='income', alpha=.6, ls='--')
ax[0].legend()
ax[0].set_xlabel('Periods')

ax[1].set_title('Debt paths')
ax[1].plot(np.arange(N_simul), debt_path, label='incomplete market')
ax[1].plot(np.arange(N_simul), debt_complete[s_path], label='complete market')
ax[1].plot(np.arange(N_simul), y_path, label='income', alpha=.6, ls='--')
ax[1].legend()
ax[1].axhline(0, color='k', ls='--')
ax[1].set_xlabel('Periods')

plt.show()

In the graph on the left, for the same sample path of nonfinancial income 𝑦𝑡, notice that
• consumption is constant when there are complete markets.
• consumption takes a random walk in the incomplete markets version of the model.
• the consumer’s debt oscillates between two values that are functions of the Markov state in the complete markets
model.
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• the consumer’s debt drifts because it contains a unit root in the incomplete markets economy.

Relabeling variables to create tax-smoothing models

As indicated above, we relabel variables to acquire tax-smoothing interpretations of the complete markets and incomplete
markets consumption-smoothing models.

fig, ax = plt.subplots(1, 2, figsize=(14, 4))

ax[0].set_title('Tax collection paths')
ax[0].plot(np.arange(N_simul), c_path, label='incomplete market')
ax[0].plot(np.arange(N_simul), np.full(N_simul, c_bar), label='complete market')
ax[0].plot(np.arange(N_simul), y_path, label='govt expenditures', alpha=.6, ls='--')
ax[0].legend()
ax[0].set_xlabel('Periods')
ax[0].set_ylim([1.4, 2.1])

ax[1].set_title('Government assets paths')
ax[1].plot(np.arange(N_simul), debt_path, label='incomplete market')
ax[1].plot(np.arange(N_simul), debt_complete[s_path], label='complete market')
ax[1].plot(np.arange(N_simul), y_path, label='govt expenditures', ls='--')
ax[1].legend()
ax[1].axhline(0, color='k', ls='--')
ax[1].set_xlabel('Periods')

plt.show()

12.2 Tax Smoothing with Complete Markets

It is instructive to focus on a simple tax-smoothing example with complete markets.
This example illustrates how, in a complete markets model like that of Lucas and Stokey [Lucas and Stokey, 1983], the
government purchases insurance from the private sector.
Payouts from the insurance it had purchased allows the government to avoid raising taxes when emergencies make gov-
ernment expenditures surge.
We assume that government expenditures take one of two values 𝐺1 < 𝐺2, where Markov state 1 means “peace” and
Markov state 2 means “war”.
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The government budget constraint in Markov state 𝑖 is

𝑇𝑖 + 𝑏𝑖 = 𝐺𝑖 + ∑
𝑗

𝑄𝑖𝑗𝑏𝑗

where

𝑄𝑖𝑗 = 𝛽𝑃𝑖𝑗

is the price today of one unit of goods in Markov state 𝑗 tomorrow when the Markov state is 𝑖 today.
𝑏𝑖 is the government’s level of assets when it arrives in Markov state 𝑖.
That is, 𝑏𝑖 equals one-period state-contingent claims owed to the government that fall due at time 𝑡 when the Markov state
is 𝑖.
Thus, if 𝑏𝑖 < 0, it means the government is owed 𝑏𝑖 or owes −𝑏𝑖 when the economy arrives in Markov state 𝑖 at time 𝑡.
In our examples below, this happens when in a previous war-time period the government has sold an Arrow securities
paying off −𝑏𝑖 in peacetime Markov state 𝑖
It can be enlightening to express the government’s budget constraint in Markov state 𝑖 as

𝑇𝑖 = 𝐺𝑖 + (∑
𝑗

𝑄𝑖𝑗𝑏𝑗 − 𝑏𝑖)

in which the term (∑𝑗 𝑄𝑖𝑗𝑏𝑗 − 𝑏𝑖) equals the net amount that the government spends to purchase one-period Arrow
securities that will pay off next period in Markov states 𝑗 = 1, … , 𝑁 after it has received payments 𝑏𝑖 this period.

12.3 Returns on State-Contingent Debt

Notice that ∑𝑁
𝑗′=1 𝑄𝑖𝑗′𝑏(𝑗′) is the amount that the government spends in Markov state 𝑖 at time 𝑡 to purchase one-period

state-contingent claims that will pay off in Markov state 𝑗′ at time 𝑡 + 1.
Then the ex post one-period gross return on the portfolio of government assets held from state 𝑖 at time 𝑡 to state 𝑗 at time
𝑡 + 1 is

𝑅(𝑗|𝑖) = 𝑏(𝑗)
∑𝑁

𝑗′=1 𝑄𝑖𝑗′𝑏(𝑗′)

The cumulative return earned from putting 1 unit of time 𝑡 goods into the government portfolio of state-contingent
securities at time 𝑡 and then rolling over the proceeds into the government portfolio each period thereafter is

𝑅𝑇 (𝑠𝑡+𝑇 , 𝑠𝑡+𝑇 −1, … , 𝑠𝑡) ≡ 𝑅(𝑠𝑡+1|𝑠𝑡)𝑅(𝑠𝑡+2|𝑠𝑡+1) ⋯ 𝑅(𝑠𝑡+𝑇 |𝑠𝑡+𝑇 −1)

Here is some code that computes one-period and cumulative returns on the government portfolio in the finite-stateMarkov
version of our complete markets model.
Convention: In this code, when 𝑃𝑖𝑗 = 0, we arbitrarily set 𝑅(𝑗|𝑖) to be 0.

def ex_post_gross_return(b, cp):
"""
calculate the ex post one-period gross return on the portfolio
of government assets, given b and Q.
"""
Q = cp.β * cp.P

(continues on next page)
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values = Q @ b

n = len(b)
R = np.zeros((n, n))

for i in range(n):
ind = cp.P[i, :] != 0
R[i, ind] = b[ind] / values[i]

return R

def cumulative_return(s_path, R):
"""
compute cumulative return from holding 1 unit market portfolio
of government bonds, given some simulated state path.
"""
T = len(s_path)

RT_path = np.empty(T)
RT_path[0] = 1
RT_path[1:] = np.cumprod([R[s_path[t], s_path[t+1]] for t in range(T-1)])

return RT_path

12.3.1 An Example of Tax Smoothing

We’ll study a tax-smoothing model with two Markov states.
In Markov state 1, there is peace and government expenditures are low.
In Markov state 2, there is war and government expenditures are high.
We’ll compute optimal policies in both complete and incomplete markets settings.
Then we’ll feed in a particular assumed path of Markov states and study outcomes.

• We’ll assume that the initial Markov state is state 1, which means we start from a state of peace.
• The government then experiences 3 time periods of war and come back to peace again.
• The history of Markov states is therefore {𝑝𝑒𝑎𝑐𝑒, 𝑤𝑎𝑟, 𝑤𝑎𝑟, 𝑤𝑎𝑟, 𝑝𝑒𝑎𝑐𝑒}.

In addition, as indicated above, to simplify our example, we’ll set the government’s initial asset level to 1, so that 𝑏1 = 1.
Here’s code that itinitializes government assets to be unity in an initial peace time Markov state.

# Parameters
β = .96

# change notation y to g in the tax-smoothing example
g = [1, 2]
b0 = 1
P = np.array([[.8, .2],

[.4, .6]])

cp = ConsumptionProblem(β, g, b0, P)

(continues on next page)
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Q = β * P

# change notation c_bar to T_bar in the tax-smoothing example
T_bar, b = consumption_complete(cp)
R = ex_post_gross_return(b, cp)
s_path = [0, 1, 1, 1, 0]
RT_path = cumulative_return(s_path, R)

print(f"P \n {P}")
print(f"Q \n {Q}")
print(f"Govt expenditures in peace and war = {g}")
print(f"Constant tax collections = {T_bar}")
print(f"Govt debts in two states = {-b}")

msg = """
Now let's check the government's budget constraint in peace and war.
Our assumptions imply that the government always purchases 0 units of the
Arrow peace security.
"""
print(msg)

AS1 = Q[0, :] @ b
# spending on Arrow security
# since the spending on Arrow peace security is not 0 anymore after we change b0 to 1
print(f"Spending on Arrow security in peace = {AS1}")
AS2 = Q[1, :] @ b
print(f"Spending on Arrow security in war = {AS2}")

print("")
# tax collections minus debt levels
print("Government tax collections minus debt levels in peace and war")
TB1 = T_bar + b[0]
print(f"T+b in peace = {TB1}")
TB2 = T_bar + b[1]
print(f"T+b in war = {TB2}")

print("")
print("Total government spending in peace and war")
G1 = g[0] + AS1
G2 = g[1] + AS2
print(f"Peace = {G1}")
print(f"War = {G2}")

print("")
print("Let's see ex-post and ex-ante returns on Arrow securities")

Π = np.reciprocal(Q)
exret = Π
print(f"Ex-post returns to purchase of Arrow securities = \n {exret}")
exant = Π * P
print(f"Ex-ante returns to purchase of Arrow securities \n {exant}")

print("")
print("The Ex-post one-period gross return on the portfolio of government assets")
print(R)

(continues on next page)
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print("")
print("The cumulative return earned from holding 1 unit market portfolio of␣

↪government bonds")
print(RT_path[-1])

P
[[0.8 0.2]
[0.4 0.6]]

Q
[[0.768 0.192]
[0.384 0.576]]

Govt expenditures in peace and war = [1, 2]
Constant tax collections = 1.2716883116883118
Govt debts in two states = [-1. -2.62337662]

Now let's check the government's budget constraint in peace and war.
Our assumptions imply that the government always purchases 0 units of the
Arrow peace security.

Spending on Arrow security in peace = 1.2716883116883118
Spending on Arrow security in war = 1.895064935064935

Government tax collections minus debt levels in peace and war
T+b in peace = 2.2716883116883118
T+b in war = 3.895064935064935

Total government spending in peace and war
Peace = 2.2716883116883118
War = 3.895064935064935

Let's see ex-post and ex-ante returns on Arrow securities
Ex-post returns to purchase of Arrow securities =
[[1.30208333 5.20833333]
[2.60416667 1.73611111]]

Ex-ante returns to purchase of Arrow securities
[[1.04166667 1.04166667]
[1.04166667 1.04166667]]

The Ex-post one-period gross return on the portfolio of government assets
[[0.78635621 2.0629085 ]
[0.5276864 1.38432018]]

The cumulative return earned from holding 1 unit market portfolio of government␣
↪bonds

2.0860704239993675
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12.3.2 Explanation

In this example, the government always purchase 1 units of the Arrow security that pays off in peace time (Markov state
1).
And it purchases a higher amount of the security that pays off in war time (Markov state 2).
Thus, this is an example in which

• during peacetime, the government purchases insurance against the possibility that war breaks out next period
• during wartime, the government purchases insurance against the possibility that war continues another period
• so long as peace continues, the ex post return on insurance against war is low
• when war breaks out or continues, the ex post return on insurance against war is high
• given the history of states that we assumed, the value of one unit of the portfolio of government assets eventually
doubles in the end because of high returns during wartime.

We recommend plugging the quantities computed above into the government budget constraints in the two Markov states
and staring.

Exercise 12.3.1
Try changing the Markov transition matrix so that

𝑃 = [1 0
.2 .8]

Also, start the system in Markov state 2 (war) with initial government assets −10, so that the government starts the war
in debt and 𝑏2 = −10.

12.4 More Finite Markov Chain Tax-Smoothing Examples

To interpret some episodes in the fiscal history of the United States, we find it interesting to study a few more examples.
We compute examples in an 𝑁 state Markov setting under both complete and incomplete markets.
These examples differ in how Markov states are jumping between peace and war.
To wrap procedures for solving models, relabeling graphs so that we record government debt rather than government
assets, and displaying results, we construct a Python class.

class TaxSmoothingExample:
"""
construct a tax-smoothing example, by relabeling consumption problem class.
"""
def __init__(self, g, P, b0, states, β=.96,

init=0, s_path=None, N_simul=80, random_state=1):

self.states = states # state names

# if the path of states is not specified
if s_path is None:

self.cp = ConsumptionProblem(β, g, b0, P, init=init)
self.s_path = self.cp.simulate(N_simul=N_simul, random_state=random_state)

(continues on next page)
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# if the path of states is specified
else:

self.cp = ConsumptionProblem(β, g, b0, P, init=s_path[0])
self.s_path = s_path

# solve for complete market case
self.T_bar, self.b = consumption_complete(self.cp)
self.debt_value = - (β * P @ self.b).T

# solve for incomplete market case
self.T_path, self.asset_path, self.g_path = \

consumption_incomplete(self.cp, self.s_path)

# calculate returns on state-contingent debt
self.R = ex_post_gross_return(self.b, self.cp)
self.RT_path = cumulative_return(self.s_path, self.R)

def display(self):

# plot graphs
N = len(self.T_path)

plt.figure()
plt.title('Tax collection paths')
plt.plot(np.arange(N), self.T_path, label='incomplete market')
plt.plot(np.arange(N), np.full(N, self.T_bar), label='complete market')
plt.plot(np.arange(N), self.g_path, label='govt expenditures', alpha=.6, ls='-

↪-')
plt.legend()
plt.xlabel('Periods')
plt.show()

plt.title('Government debt paths')
plt.plot(np.arange(N), -self.asset_path, label='incomplete market')
plt.plot(np.arange(N), -self.b[self.s_path], label='complete market')
plt.plot(np.arange(N), self.g_path, label='govt expenditures', ls='--')
plt.plot(np.arange(N), self.debt_value[self.s_path], label="value of debts␣

↪today")
plt.legend()
plt.axhline(0, color='k', ls='--')
plt.xlabel('Periods')
plt.show()

fig, ax = plt.subplots()
ax.set_title('Cumulative return path (complete markets)')
line1 = ax.plot(np.arange(N), self.RT_path, color='blue')[0]
c1 = line1.get_color()
ax.set_xlabel('Periods')
ax.set_ylabel('Cumulative return', color=c1)

ax_ = ax.twinx()
line2 = ax_.plot(np.arange(N), self.g_path, ls='--', color='green')[0]
c2 = line2.get_color()
ax_.set_ylabel('Government expenditures', color=c2)

plt.show()

(continues on next page)
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# plot detailed information
Q = self.cp.β * self.cp.P

print(f"P \n {self.cp.P}")
print(f"Q \n {Q}")
print(f"Govt expenditures in {', '.join(self.states)} = {self.cp.y.flatten()}

↪")
print(f"Constant tax collections = {self.T_bar}")
print(f"Govt debt in {len(self.states)} states = {-self.b}")

print("")
print(f"Government tax collections minus debt levels in {', '.join(self.

↪states)}")
for i in range(len(self.states)):

TB = self.T_bar + self.b[i]
print(f" T+b in {self.states[i]} = {TB}")

print("")
print(f"Total government spending in {', '.join(self.states)}")
for i in range(len(self.states)):

G = self.cp.y[i, 0] + Q[i, :] @ self.b
print(f" {self.states[i]} = {G}")

print("")
print("Let's see ex-post and ex-ante returns on Arrow securities \n")

print(f"Ex-post returns to purchase of Arrow securities:")
for i in range(len(self.states)):

for j in range(len(self.states)):
if Q[i, j] != 0.:

print(f" π({self.states[j]}|{self.states[i]}) = {1/Q[i, j]}")

print("")
exant = 1 / self.cp.β
print(f"Ex-ante returns to purchase of Arrow securities = {exant}")

print("")
print("The Ex-post one-period gross return on the portfolio of government␣

↪assets")
print(self.R)

print("")
print("The cumulative return earned from holding 1 unit market portfolio of␣

↪government bonds")
print(self.RT_path[-1])
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12.4.1 Parameters

γ = .1
λ = .1
ϕ = .1
θ = .1
ψ = .1
g_L = .5
g_M = .8
g_H = 1.2
β = .96

12.4.2 Example 1

This example is designed to produce some stylized versions of tax, debt, and deficit paths followed by the United States
during and after the Civil War and also during and after World War I.
We set the Markov chain to have three states

𝑃 = ⎡⎢
⎣

1 − 𝜆 𝜆 0
0 1 − 𝜙 𝜙
0 0 1

⎤⎥
⎦

where the government expenditure vector 𝑔 = [𝑔𝐿 𝑔𝐻 𝑔𝑀 ] where 𝑔𝐿 < 𝑔𝑀 < 𝑔𝐻 .
We set 𝑏0 = 1 and assume that the initial Markov state is state 1 so that the system starts off in peace.
These parameters have government expenditure beginning at a low level, surging during the war, then decreasing after
the war to a level that exceeds its prewar level.
(This type of pattern occurred in the US Civil War and World War I experiences.)

g_ex1 = [g_L, g_H, g_M]
P_ex1 = np.array([[1-λ, λ, 0],

[0, 1-ϕ, ϕ],
[0, 0, 1]])

b0_ex1 = 1
states_ex1 = ['peace', 'war', 'postwar']

ts_ex1 = TaxSmoothingExample(g_ex1, P_ex1, b0_ex1, states_ex1, random_state=1)
ts_ex1.display()
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P
[[0.9 0.1 0. ]
[0. 0.9 0.1]
[0. 0. 1. ]]

Q
[[0.864 0.096 0. ]
[0. 0.864 0.096]
[0. 0. 0.96 ]]

Govt expenditures in peace, war, postwar = [0.5 1.2 0.8]
Constant tax collections = 0.7548096885813149
Govt debt in 3 states = [-1. -4.07093426 -1.12975779]

Government tax collections minus debt levels in peace, war, postwar
T+b in peace = 1.754809688581315
T+b in war = 4.825743944636679
T+b in postwar = 1.8845674740484442

Total government spending in peace, war, postwar
peace = 1.754809688581315
war = 4.825743944636679
postwar = 1.8845674740484442

Let's see ex-post and ex-ante returns on Arrow securities

Ex-post returns to purchase of Arrow securities:
π(peace|peace) = 1.1574074074074074
π(war|peace) = 10.416666666666666

(continues on next page)
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π(war|war) = 1.1574074074074074
π(postwar|war) = 10.416666666666666
π(postwar|postwar) = 1.0416666666666667

Ex-ante returns to purchase of Arrow securities = 1.0416666666666667

The Ex-post one-period gross return on the portfolio of government assets
[[0.7969336 3.24426428 0. ]
[0. 1.12278592 0.31159337]
[0. 0. 1.04166667]]

The cumulative return earned from holding 1 unit market portfolio of government␣
↪bonds

0.17908622141460231

# The following shows the use of the wrapper class when a specific state path is given
s_path = [0, 0, 1, 1, 2]
ts_s_path = TaxSmoothingExample(g_ex1, P_ex1, b0_ex1, states_ex1, s_path=s_path)
ts_s_path.display()
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P
[[0.9 0.1 0. ]
[0. 0.9 0.1]
[0. 0. 1. ]]

Q
[[0.864 0.096 0. ]
[0. 0.864 0.096]
[0. 0. 0.96 ]]

Govt expenditures in peace, war, postwar = [0.5 1.2 0.8]
Constant tax collections = 0.7548096885813149
Govt debt in 3 states = [-1. -4.07093426 -1.12975779]

Government tax collections minus debt levels in peace, war, postwar
T+b in peace = 1.754809688581315
T+b in war = 4.825743944636679
T+b in postwar = 1.8845674740484442

Total government spending in peace, war, postwar
peace = 1.754809688581315
war = 4.825743944636679
postwar = 1.8845674740484442

Let's see ex-post and ex-ante returns on Arrow securities

Ex-post returns to purchase of Arrow securities:
π(peace|peace) = 1.1574074074074074
π(war|peace) = 10.416666666666666

(continues on next page)
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π(war|war) = 1.1574074074074074
π(postwar|war) = 10.416666666666666
π(postwar|postwar) = 1.0416666666666667

Ex-ante returns to purchase of Arrow securities = 1.0416666666666667

The Ex-post one-period gross return on the portfolio of government assets
[[0.7969336 3.24426428 0. ]
[0. 1.12278592 0.31159337]
[0. 0. 1.04166667]]

The cumulative return earned from holding 1 unit market portfolio of government␣
↪bonds

0.9045311615620277

12.4.3 Example 2

This example captures a peace followed by a war, eventually followed by a permanent peace .
Here we set

𝑃 = ⎡⎢
⎣

1 0 0
0 1 − 𝛾 𝛾
𝜙 0 1 − 𝜙

⎤⎥
⎦

where the government expenditure vector 𝑔 = [𝑔𝐿 𝑔𝐿 𝑔𝐻] and where 𝑔𝐿 < 𝑔𝐻 .
We assume 𝑏0 = 1 and that the initial Markov state is state 2 so that the system starts off in a temporary peace.

g_ex2 = [g_L, g_L, g_H]
P_ex2 = np.array([[1, 0, 0],

[0, 1-γ, γ],
[ϕ, 0, 1-ϕ]])

b0_ex2 = 1
states_ex2 = ['peace', 'temporary peace', 'war']

ts_ex2 = TaxSmoothingExample(g_ex2, P_ex2, b0_ex2, states_ex2, init=1, random_state=1)
ts_ex2.display()
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P
[[1. 0. 0. ]
[0. 0.9 0.1]
[0.1 0. 0.9]]

Q
[[0.96 0. 0. ]
[0. 0.864 0.096]
[0.096 0. 0.864]]

Govt expenditures in peace, temporary peace, war = [0.5 0.5 1.2]
Constant tax collections = 0.6053287197231834
Govt debt in 3 states = [ 2.63321799 -1. -2.51384083]

Government tax collections minus debt levels in peace, temporary peace, war
T+b in peace = -2.0278892733564
T+b in temporary peace = 1.6053287197231834
T+b in war = 3.1191695501730106

Total government spending in peace, temporary peace, war
peace = -2.0278892733564
temporary peace = 1.6053287197231834
war = 3.1191695501730106

Let's see ex-post and ex-ante returns on Arrow securities

Ex-post returns to purchase of Arrow securities:
π(peace|peace) = 1.0416666666666667
π(temporary peace|temporary peace) = 1.1574074074074074

(continues on next page)
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π(war|temporary peace) = 10.416666666666666
π(peace|war) = 10.416666666666666
π(war|war) = 1.1574074074074074

Ex-ante returns to purchase of Arrow securities = 1.0416666666666667

The Ex-post one-period gross return on the portfolio of government assets
[[ 1.04166667 0. 0. ]
[ 0. 0.90470824 2.27429251]
[-1.37206116 0. 1.30985865]]

The cumulative return earned from holding 1 unit market portfolio of government␣
↪bonds

-9.368991732594216

12.4.4 Example 3

This example features a situation in which one of the states is a war state with no hope of peace next period, while another
state is a war state with a positive probability of peace next period.
The Markov chain is:

𝑃 =
⎡
⎢⎢
⎣

1 − 𝜆 𝜆 0 0
0 1 − 𝜙 𝜙 0
0 0 1 − 𝜓 𝜓
𝜃 0 0 1 − 𝜃

⎤
⎥⎥
⎦

with government expenditure levels for the four states being [𝑔𝐿 𝑔𝐿 𝑔𝐻 𝑔𝐻] where 𝑔𝐿 < 𝑔𝐻 .
We start with 𝑏0 = 1 and 𝑠0 = 1.

g_ex3 = [g_L, g_L, g_H, g_H]
P_ex3 = np.array([[1-λ, λ, 0, 0],

[0, 1-ϕ, ϕ, 0],
[0, 0, 1-ψ, ψ],
[θ, 0, 0, 1-θ ]])

b0_ex3 = 1
states_ex3 = ['peace1', 'peace2', 'war1', 'war2']

ts_ex3 = TaxSmoothingExample(g_ex3, P_ex3, b0_ex3, states_ex3, random_state=1)
ts_ex3.display()
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P
[[0.9 0.1 0. 0. ]
[0. 0.9 0.1 0. ]
[0. 0. 0.9 0.1]
[0.1 0. 0. 0.9]]

Q
[[0.864 0.096 0. 0. ]
[0. 0.864 0.096 0. ]
[0. 0. 0.864 0.096]
[0.096 0. 0. 0.864]]

Govt expenditures in peace1, peace2, war1, war2 = [0.5 0.5 1.2 1.2]
Constant tax collections = 0.6927944572748268
Govt debt in 4 states = [-1. -3.42494226 -6.86027714 -4.43533487]

Government tax collections minus debt levels in peace1, peace2, war1, war2
T+b in peace1 = 1.6927944572748268
T+b in peace2 = 4.117736720554273
T+b in war1 = 7.553071593533488
T+b in war2 = 5.128129330254041

Total government spending in peace1, peace2, war1, war2
peace1 = 1.6927944572748268
peace2 = 4.117736720554273
war1 = 7.553071593533487
war2 = 5.128129330254041

Let's see ex-post and ex-ante returns on Arrow securities

(continues on next page)
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Ex-post returns to purchase of Arrow securities:
π(peace1|peace1) = 1.1574074074074074
π(peace2|peace1) = 10.416666666666666
π(peace2|peace2) = 1.1574074074074074
π(war1|peace2) = 10.416666666666666
π(war1|war1) = 1.1574074074074074
π(war2|war1) = 10.416666666666666
π(peace1|war2) = 10.416666666666666
π(war2|war2) = 1.1574074074074074

Ex-ante returns to purchase of Arrow securities = 1.0416666666666667

The Ex-post one-period gross return on the portfolio of government assets
[[0.83836741 2.87135998 0. 0. ]
[0. 0.94670854 1.89628977 0. ]
[0. 0. 1.07983627 0.69814023]
[0.2545741 0. 0. 1.1291214 ]]

The cumulative return earned from holding 1 unit market portfolio of government␣
↪bonds

0.02371440178864222

12.4.5 Example 4

Here the Markov chain is:

𝑃 =
⎡
⎢
⎢
⎢
⎣

1 − 𝜆 𝜆 0 0 0
0 1 − 𝜙 𝜙 0 0
0 0 1 − 𝜓 𝜓 0
0 0 0 1 − 𝜃 𝜃
0 0 0 0 1

⎤
⎥
⎥
⎥
⎦

with government expenditure levels for the five states being [𝑔𝐿 𝑔𝐿 𝑔𝐻 𝑔𝐻 𝑔𝐿] where 𝑔𝐿 < 𝑔𝐻 .
We ssume that 𝑏0 = 1 and 𝑠0 = 1.

g_ex4 = [g_L, g_L, g_H, g_H, g_L]
P_ex4 = np.array([[1-λ, λ, 0, 0, 0],

[0, 1-ϕ, ϕ, 0, 0],
[0, 0, 1-ψ, ψ, 0],
[0, 0, 0, 1-θ, θ],
[0, 0, 0, 0, 1]])

b0_ex4 = 1
states_ex4 = ['peace1', 'peace2', 'war1', 'war2', 'permanent peace']

ts_ex4 = TaxSmoothingExample(g_ex4, P_ex4, b0_ex4, states_ex4, random_state=1)
ts_ex4.display()
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P
[[0.9 0.1 0. 0. 0. ]
[0. 0.9 0.1 0. 0. ]
[0. 0. 0.9 0.1 0. ]
[0. 0. 0. 0.9 0.1]
[0. 0. 0. 0. 1. ]]

Q
[[0.864 0.096 0. 0. 0. ]
[0. 0.864 0.096 0. 0. ]
[0. 0. 0.864 0.096 0. ]
[0. 0. 0. 0.864 0.096]
[0. 0. 0. 0. 0.96 ]]

Govt expenditures in peace1, peace2, war1, war2, permanent peace = [0.5 0.5 1.2 1.
↪2 0.5]

Constant tax collections = 0.6349979047185738
Govt debt in 5 states = [-1. -2.82289484 -5.4053292 -1.77211121 3.

↪37494762]

Government tax collections minus debt levels in peace1, peace2, war1, war2,␣
↪permanent peace
T+b in peace1 = 1.6349979047185736
T+b in peace2 = 3.4578927455370505
T+b in war1 = 6.040327103363229
T+b in war2 = 2.4071091102836433
T+b in permanent peace = -2.7399497132457697

Total government spending in peace1, peace2, war1, war2, permanent peace

(continues on next page)
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peace1 = 1.6349979047185736
peace2 = 3.457892745537051
war1 = 6.040327103363228
war2 = 2.407109110283643
permanent peace = -2.7399497132457697

Let's see ex-post and ex-ante returns on Arrow securities

Ex-post returns to purchase of Arrow securities:
π(peace1|peace1) = 1.1574074074074074
π(peace2|peace1) = 10.416666666666666
π(peace2|peace2) = 1.1574074074074074
π(war1|peace2) = 10.416666666666666
π(war1|war1) = 1.1574074074074074
π(war2|war1) = 10.416666666666666
π(war2|war2) = 1.1574074074074074
π(permanent peace|war2) = 10.416666666666666
π(permanent peace|permanent peace) = 1.0416666666666667

Ex-ante returns to purchase of Arrow securities = 1.0416666666666667

The Ex-post one-period gross return on the portfolio of government assets
[[ 0.8810589 2.48713661 0. 0. 0. ]
[ 0. 0.95436011 1.82742569 0. 0. ]
[ 0. 0. 1.11672808 0.36611394 0. ]
[ 0. 0. 0. 1.46806216 -2.79589276]
[ 0. 0. 0. 0. 1.04166667]]

The cumulative return earned from holding 1 unit market portfolio of government␣
↪bonds

-11.132109773063616

12.4.6 Example 5

The example captures a case when the system follows a deterministic path from peace to war, and back to peace again.
Since there is no randomness, the outcomes in complete markets setting should be the same as in incomplete markets
setting.
The Markov chain is:

𝑃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with government expenditure levels for the seven states being [𝑔𝐿 𝑔𝐿 𝑔𝐻 𝑔𝐻 𝑔𝐻 𝑔𝐻 𝑔𝐿] where 𝑔𝐿 < 𝑔𝐻 .
Assume 𝑏0 = 1 and 𝑠0 = 1.

g_ex5 = [g_L, g_L, g_H, g_H, g_H, g_H, g_L]
P_ex5 = np.array([[0, 1, 0, 0, 0, 0, 0],

(continues on next page)
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[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 1]])

b0_ex5 = 1
states_ex5 = ['peace1', 'peace2', 'war1', 'war2', 'war3', 'permanent peace']

ts_ex5 = TaxSmoothingExample(g_ex5, P_ex5, b0_ex5, states_ex5, N_simul=7, random_
↪state=1)

ts_ex5.display()
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P
[[0 1 0 0 0 0 0]
[0 0 1 0 0 0 0]
[0 0 0 1 0 0 0]
[0 0 0 0 1 0 0]
[0 0 0 0 0 1 0]
[0 0 0 0 0 0 1]
[0 0 0 0 0 0 1]]

Q
[[0. 0.96 0. 0. 0. 0. 0. ]
[0. 0. 0.96 0. 0. 0. 0. ]
[0. 0. 0. 0.96 0. 0. 0. ]
[0. 0. 0. 0. 0.96 0. 0. ]
[0. 0. 0. 0. 0. 0.96 0. ]
[0. 0. 0. 0. 0. 0. 0.96]
[0. 0. 0. 0. 0. 0. 0.96]]

Govt expenditures in peace1, peace2, war1, war2, war3, permanent peace = [0.5 0.5␣
↪1.2 1.2 1.2 1.2 0.5]

Constant tax collections = 0.5571895472128001
Govt debt in 6 states = [-1. -1.10123911 -1.20669652 -0.58738132 0.

↪05773868 0.72973868
1.42973868]

Government tax collections minus debt levels in peace1, peace2, war1, war2, war3,␣
↪permanent peace
T+b in peace1 = 1.5571895472128001
T+b in peace2 = 1.6584286588928001

(continues on next page)
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T+b in war1 = 1.7638860668928005
T+b in war2 = 1.1445708668928003
T+b in war3 = 0.4994508668928004
T+b in permanent peace = -0.17254913310719955

Total government spending in peace1, peace2, war1, war2, war3, permanent peace
peace1 = 1.5571895472128
peace2 = 1.6584286588928003
war1 = 1.7638860668928
war2 = 1.1445708668928003
war3 = 0.49945086689280027
permanent peace = -0.17254913310719933

Let's see ex-post and ex-ante returns on Arrow securities

Ex-post returns to purchase of Arrow securities:
π(peace2|peace1) = 1.0416666666666667
π(war1|peace2) = 1.0416666666666667
π(war2|war1) = 1.0416666666666667
π(war3|war2) = 1.0416666666666667
π(permanent peace|war3) = 1.0416666666666667

Ex-ante returns to purchase of Arrow securities = 1.0416666666666667

The Ex-post one-period gross return on the portfolio of government assets
[[0. 1.04166667 0. 0. 0. 0.
0. ]

[0. 0. 1.04166667 0. 0. 0.
0. ]

[0. 0. 0. 1.04166667 0. 0.
0. ]

[0. 0. 0. 0. 1.04166667 0.
0. ]

[0. 0. 0. 0. 0. 1.04166667
0. ]

[0. 0. 0. 0. 0. 0.
1.04166667]

[0. 0. 0. 0. 0. 0.
1.04166667]]

The cumulative return earned from holding 1 unit market portfolio of government␣
↪bonds

1.2775343959060068

12.4.7 Continuous-State Gaussian Model

To construct a tax-smoothing version of the complete markets consumption-smoothing model with a continuous state
space that we presented in the lecture consumption smoothing with complete and incomplete markets, we simply relabel
variables.
Thus, a government faces a sequence of budget constraints

𝑇𝑡 + 𝑏𝑡 = 𝑔𝑡 + 𝛽𝔼𝑡𝑏𝑡+1, 𝑡 ≥ 0
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where 𝑇𝑡 is tax revenues, 𝑏𝑡 are receipts at 𝑡 from contingent claims that the government had purchased at time 𝑡 − 1, and

𝛽𝔼𝑡𝑏𝑡+1 ≡ ∫ 𝑞𝑡+1(𝑥𝑡+1|𝑥𝑡)𝑏𝑡+1(𝑥𝑡+1)𝑑𝑥𝑡+1

is the value of time 𝑡 + 1 state-contingent claims purchased by the government at time 𝑡.
As above with the consumption-smoothing model, we can solve the time 𝑡 budget constraint forward to obtain

𝑏𝑡 = 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗(𝑔𝑡+𝑗 − 𝑇𝑡+𝑗)

which can be rearranged to become

𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑔𝑡+𝑗 = 𝑏𝑡 + 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑇𝑡+𝑗

which states that the present value of government purchases equals the value of government assets at 𝑡 plus the present
value of tax receipts.
With these relabelings, examples presented in consumption smoothing with complete and incomplete markets can be inter-
preted as tax-smoothing models.
Returns: In the continuous state version of our incomplete markets model, the ex post one-period gross rate of return
on the government portfolio equals

𝑅(𝑥𝑡+1|𝑥𝑡) = 𝑏(𝑥𝑡+1)
𝛽𝐸𝑏(𝑥𝑡+1)|𝑥𝑡

Related Lectures

Throughout this lecture, we have taken one-period interest rates and Arrow security prices as exogenous objects deter-
mined outside the model and specified them in ways designed to align our models closely with the consumption smoothing
model of Barro [Barro, 1979].
Other lectures make these objects endogenous and describe how a government optimallymanipulates prices of government
debt, albeit indirectly via effects distorting taxes have on equilibrium prices and allocations.
In optimal taxation in an LQ economy and recursive optimal taxation, we study complete-markets models in which the
government recognizes that it can manipulate Arrow securities prices.
Linear-quadratic versions of the Lucas-Stokey tax-smoothing model are described inOptimal Taxation in an LQ Economy.
That lecture is a warm-up for the non-linear-quadratic model of tax smoothing described in Optimal Taxation with State-
Contingent Debt.
In bothOptimal Taxation in an LQ Economy andOptimal Taxation with State-Contingent Debt, the government recognizes
that its decisions affect prices.
In optimal taxation with incomplete markets, we study an incomplete-markets model in which the government also
manipulates prices of government debt.
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MARKOV JUMP LINEAR QUADRATIC DYNAMIC PROGRAMMING

Contents

• Markov Jump Linear Quadratic Dynamic Programming
– Overview

– Review of useful LQ dynamic programming formulas

– Linked Riccati equations for Markov LQ dynamic programming

– Applications

– Example 1

– Example 2

– More examples

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

13.1 Overview

This lecture describesMarkov jump linear quadratic dynamic programming, an extension of the method described
in the first LQ control lecture.
Markov jump linear quadratic dynamic programming is described and analyzed in [Do Val et al., 1999] and the references
cited there.
The method has been applied to problems in macroeconomics and monetary economics by [Svensson et al., 2008] and
[Svensson and Williams, 2009].
The periodic models of seasonality described in chapter 14 of [Hansen and Sargent, 2013] are a special case of Markov
jump linear quadratic problems.
Markov jump linear quadratic dynamic programming combines advantages of

• the computational simplicity of linear quadratic dynamic programming, with
• the ability of finite state Markov chains to represent interesting patterns of random variation.

The idea is to replace the constant matrices that define a linear quadratic dynamic programming problem with𝑁 sets
of matrices that are fixed functions of the state of an 𝑁 state Markov chain.
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The state of the Markov chain together with the continuous 𝑛 × 1 state vector 𝑥𝑡 form the state of the system.
For the class of infinite horizon problems being studied in this lecture, we obtain 𝑁 interrelated matrix Riccati equations
that determine 𝑁 optimal value functions and 𝑁 linear decision rules.
One of these value functions and one of these decision rules apply in each of the 𝑁 Markov states.
That is, when the Markov state is in state 𝑗, the value function and the decision rule for state 𝑗 prevails.

13.2 Review of useful LQ dynamic programming formulas

To begin, it is handy to have the following reminder in mind.
A linear quadratic dynamic programming problem consists of a scalar discount factor 𝛽 ∈ (0, 1), an 𝑛 × 1 state
vector 𝑥𝑡, an initial condition for 𝑥0, a 𝑘 × 1 control vector 𝑢𝑡, a 𝑝 × 1 random shock vector 𝑤𝑡+1 and the following two
triples of matrices:

• A triple of matrices (𝑅, 𝑄, 𝑊) defining a loss function
𝑟(𝑥𝑡, 𝑢𝑡) = 𝑥′

𝑡𝑅𝑥𝑡 + 𝑢′
𝑡𝑄𝑢𝑡 + 2𝑢′

𝑡𝑊𝑥𝑡

• a triple of matrices (𝐴, 𝐵, 𝐶) defining a state-transition law
𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1

The problem is

−𝑥′
0𝑃𝑥0 − 𝜌 = min

{𝑢𝑡}∞
𝑡=0

𝐸
∞

∑
𝑡=0

𝛽𝑡𝑟(𝑥𝑡, 𝑢𝑡)

subject to the transition law for the state.
The optimal decision rule has the form

𝑢𝑡 = −𝐹𝑥𝑡

and the optimal value function is of the form

− (𝑥′
𝑡𝑃𝑥𝑡 + 𝜌)

where 𝑃 solves the algebraic matrix Riccati equation

𝑃 = 𝑅 + 𝛽𝐴′𝑃𝐴 − (𝛽𝐵′𝑃𝐴 + 𝑊)′(𝑄 + 𝛽𝐵𝑃𝐵)−1(𝛽𝐵𝑃𝐴 + 𝑊)

and the constant 𝜌 satisfies

𝜌 = 𝛽 (𝜌 + trace(𝑃𝐶𝐶′))

and the matrix 𝐹 in the decision rule for 𝑢𝑡 satisfies

𝐹 = (𝑄 + 𝛽𝐵′𝑃𝐵)−1(𝛽(𝐵′𝑃𝐴) + 𝑊)

With the preceding formulas in mind, we are ready to approach Markov Jump linear quadratic dynamic programming.
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13.3 Linked Riccati equations for Markov LQ dynamic programming

The key idea is to make the matrices 𝐴, 𝐵, 𝐶, 𝑅, 𝑄, 𝑊 fixed functions of a finite state 𝑠 that is governed by an 𝑁 state
Markov chain.
This makes decision rules depend on the Markov state, and so fluctuate through time in limited ways.
In particular, we use the following extension of a discrete-time linear quadratic dynamic programming problem.
We let 𝑠𝑡 ∈ [1, 2, … , 𝑁] be a time 𝑡 realization of an 𝑁 -state Markov chain with transition matrix Π having typical
element Π𝑖𝑗.
Here 𝑖 denotes today and 𝑗 denotes tomorrow and

Π𝑖𝑗 = Prob(𝑠𝑡+1 = 𝑗|𝑠𝑡 = 𝑖)
We’ll switch between labeling today’s state as 𝑠𝑡 and 𝑖 and between labeling tomorrow’s state as 𝑠𝑡+1 or 𝑗.
The decision-maker solves the minimization problem:

min
{𝑢𝑡}∞

𝑡=0
𝐸

∞
∑
𝑡=0

𝛽𝑡𝑟(𝑥𝑡, 𝑠𝑡, 𝑢𝑡)

with

𝑟(𝑥𝑡, 𝑠𝑡, 𝑢𝑡) = 𝑥′
𝑡𝑅𝑠𝑡

𝑥𝑡 + 𝑢′
𝑡𝑄𝑠𝑡

𝑢𝑡 + 2𝑢′
𝑡𝑊𝑠𝑡

𝑥𝑡

subject to linear laws of motion with matrices (𝐴, 𝐵, 𝐶) each possibly dependent on the Markov-state-𝑠𝑡:

𝑥𝑡+1 = 𝐴𝑠𝑡
𝑥𝑡 + 𝐵𝑠𝑡

𝑢𝑡 + 𝐶𝑠𝑡
𝑤𝑡+1

where {𝑤𝑡+1} is an i.i.d. stochastic process with 𝑤𝑡+1 ∼ 𝑁(0, 𝐼).
The optimal decision rule for this problem has the form

𝑢𝑡 = −𝐹𝑠𝑡
𝑥𝑡

and the optimal value functions are of the form

− (𝑥′
𝑡𝑃𝑠𝑡

𝑥𝑡 + 𝜌𝑠𝑡
)

or equivalently

−𝑥′
𝑡𝑃𝑖𝑥𝑡 − 𝜌𝑖

The optimal value functions −𝑥′𝑃𝑖𝑥 − 𝜌𝑖 for 𝑖 = 1, … , 𝑛 satisfy the 𝑁 interrelated Bellman equations
−𝑥′𝑃𝑖𝑥 − 𝜌𝑖 = max

𝑢
−

[𝑥′𝑅𝑖𝑥 + 𝑢′𝑄𝑖𝑢 + 2𝑢′𝑊𝑖𝑥 + 𝛽 ∑
𝑗

Π𝑖𝑗𝐸((𝐴𝑖𝑥 + 𝐵𝑖𝑢 + 𝐶𝑖𝑤)′𝑃𝑗(𝐴𝑖𝑥 + 𝐵𝑖𝑢 + 𝐶𝑖𝑤)𝑥 + 𝜌𝑗)]

The matrices 𝑃𝑠𝑡
= 𝑃𝑖 and the scalars 𝜌𝑠𝑡

= 𝜌𝑖, 𝑖 = 1, …, n satisfy the following stacked system of algebraic matrix
Riccati equations:

𝑃𝑖 = 𝑅𝑖 + 𝛽 ∑
𝑗

𝐴′
𝑖𝑃𝑗𝐴𝑖Π𝑖𝑗 − ∑

𝑗
Π𝑖𝑗[(𝛽𝐵′

𝑖𝑃𝑗𝐴𝑖 + 𝑊𝑖)′(𝑄 + 𝛽𝐵′
𝑖𝑃𝑗𝐵𝑖)−1(𝛽𝐵′

𝑖𝑃𝑗𝐴𝑖 + 𝑊𝑖)]

𝜌𝑖 = 𝛽 ∑
𝑗

Π𝑖𝑗(𝜌𝑗 + trace(𝑃𝑗𝐶𝑖𝐶′
𝑖 ))

and the 𝐹𝑖 in the optimal decision rules are

𝐹𝑖 = (𝑄𝑖 + 𝛽 ∑
𝑗

Π𝑖𝑗𝐵′
𝑖𝑃𝑗𝐵𝑖)−1(𝛽 ∑

𝑗
Π𝑖𝑗(𝐵′

𝑖𝑃𝑗𝐴𝑖) + 𝑊𝑖)
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13.4 Applications

We now describe some Python code and a few examples that put the code to work.
To begin, we import these Python modules

import numpy as np
import quantecon as qe
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# Set discount factor
β = 0.95

13.5 Example 1

This example is a version of a classic problem of optimally adjusting a variable 𝑘𝑡 to a target level in the face of costly
adjustment.
This provides a model of gradual adjustment.
Given 𝑘0, the objective function is

max
{𝑘𝑡}∞

𝑡=1

𝐸0
∞

∑
𝑡=0

𝛽𝑡𝑟 (𝑠𝑡, 𝑘𝑡)

where the one-period payoff function is

𝑟(𝑠𝑡, 𝑘𝑡) = 𝑓1,𝑠𝑡
𝑘𝑡 − 𝑓2,𝑠𝑡

𝑘2
𝑡 − 𝑑𝑠𝑡

(𝑘𝑡+1 − 𝑘𝑡)2,

𝐸0 is a mathematical expectation conditioned on time 0 information 𝑥0, 𝑠0 and the transition law for continuous state
variable 𝑘𝑡 is

𝑘𝑡+1 − 𝑘𝑡 = 𝑢𝑡

We can think of 𝑘𝑡 as the decision-maker’s capital and 𝑢𝑡 as costs of adjusting the level of capital.
We assume that 𝑓1 (𝑠𝑡) > 0, 𝑓2 (𝑠𝑡) > 0, and 𝑑 (𝑠𝑡) > 0.
Denote the state transition matrix for Markov state 𝑠𝑡 ∈ {1, 2} as Π:

Pr (𝑠𝑡+1 = 𝑗 ∣ 𝑠𝑡 = 𝑖) = Π𝑖𝑗

Let 𝑥𝑡 = [𝑘𝑡
1 ]

We can represent the one-period payoff function 𝑟 (𝑠𝑡, 𝑘𝑡) and the state-transition law as

𝑟 (𝑠𝑡, 𝑘𝑡) = 𝑓1,𝑠𝑡
𝑘𝑡 − 𝑓2,𝑠𝑡

𝑘2
𝑡 − 𝑑𝑠𝑡

𝑢𝑡
2

= −𝑥′
𝑡 [ 𝑓2,𝑠𝑡

− 𝑓1,𝑠𝑡
2

− 𝑓1,𝑠𝑡
2 0

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝑅(𝑠𝑡)

𝑥𝑡 + 𝑑𝑠𝑡⏟
≡𝑄(𝑠𝑡)

𝑢𝑡
2

𝑥𝑡+1 = [𝑘𝑡+1
1 ] = 𝐼2⏟

≡𝐴(𝑠𝑡)
𝑥𝑡 + [1

0]
⏟

≡𝐵(𝑠𝑡)

𝑢𝑡
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def construct_arrays1(f1_vals=[1. ,1.],
f2_vals=[1., 1.],
d_vals=[1., 1.]):

"""
Construct matrices that map the problem described in example 1
into a Markov jump linear quadratic dynamic programming problem
"""

# Number of Markov states
m = len(f1_vals)
# Number of state and control variables
n, k = 2, 1

# Construct sets of matrices for each state
As = [np.eye(n) for i in range(m)]
Bs = [np.array([[1, 0]]).T for i in range(m)]

Rs = np.zeros((m, n, n))
Qs = np.zeros((m, k, k))

for i in range(m):
Rs[i, 0, 0] = f2_vals[i]
Rs[i, 1, 0] = - f1_vals[i] / 2
Rs[i, 0, 1] = - f1_vals[i] / 2

Qs[i, 0, 0] = d_vals[i]

Cs, Ns = None, None

# Compute the optimal k level of the payoff function in each state
k_star = np.empty(m)
for i in range(m):

k_star[i] = f1_vals[i] / (2 * f2_vals[i])

return Qs, Rs, Ns, As, Bs, Cs, k_star

The continuous part of the state 𝑥𝑡 consists of two variables, namely, 𝑘𝑡 and a constant term.

state_vec1 = ["k", "constant term"]

We start with a Markov transition matrix that makes the Markov state be strictly periodic:

Π1 = [0 1
1 0] ,

We set 𝑓1,𝑠𝑡
and 𝑓2,𝑠𝑡

to be independent of the Markov state 𝑠𝑡

𝑓1,1 = 𝑓1,2 = 1,

𝑓2,1 = 𝑓2,2 = 1
In contrast to 𝑓1,𝑠𝑡

and 𝑓2,𝑠𝑡
, we make the adjustment cost 𝑑𝑠𝑡

vary across Markov states 𝑠𝑡.
We set the adjustment cost to be lower in Markov state 2

𝑑1 = 1, 𝑑2 = 0.5

The following code forms aMarkov switching LQ problem and computes the optimal value functions and optimal decision
rules for each Markov state
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# Construct Markov transition matrix
Π1 = np.array([[0., 1.],

[1., 0.]])

# Construct matrices
Qs, Rs, Ns, As, Bs, Cs, k_star = construct_arrays1(d_vals=[1., 0.5])

# Construct a Markov Jump LQ problem
ex1_a = qe.LQMarkov(Π1, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
# Solve for optimal value functions and decision rules
ex1_a.stationary_values();

Let’s look at the value function matrices and the decision rules for each Markov state

# P(s)
ex1_a.Ps

array([[[ 1.56626026, -0.78313013],
[-0.78313013, -4.60843493]],

[[ 1.37424214, -0.68712107],
[-0.68712107, -4.65643947]]])

# d(s) = 0, since there is no randomness
ex1_a.ds

array([0., 0.])

# F(s)
ex1_a.Fs

array([[[ 0.56626026, -0.28313013]],

[[ 0.74848427, -0.37424214]]])

Now we’ll plot the decision rules and see if they make sense

# Plot the optimal decision rules
k_grid = np.linspace(0., 1., 100)
# Optimal choice in state s1
u1_star = - ex1_a.Fs[0, 0, 1] - ex1_a.Fs[0, 0, 0] * k_grid
# Optimal choice in state s2
u2_star = - ex1_a.Fs[1, 0, 1] - ex1_a.Fs[1, 0, 0] * k_grid

fig, ax = plt.subplots()
ax.plot(k_grid, k_grid + u1_star, label="$\overline{s}_1$ (high)")
ax.plot(k_grid, k_grid + u2_star, label="$\overline{s}_2$ (low)")

# The optimal k*
ax.scatter([0.5, 0.5], [0.5, 0.5], marker="*")
ax.plot([k_star[0], k_star[0]], [0., 1.0], '--')

(continues on next page)
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(continued from previous page)

# 45 degree line
ax.plot([0., 1.], [0., 1.], '--', label="45 degree line")

ax.set_xlabel("$k_t$")
ax.set_ylabel("$k_{t+1}$")
ax.legend()
plt.show()

The above graph plots 𝑘𝑡+1 = 𝑘𝑡 + 𝑢𝑡 = 𝑘𝑡 − 𝐹𝑥𝑡 as an affine (i.e., linear in 𝑘𝑡 plus a constant) function of 𝑘𝑡 for both
Markov states 𝑠𝑡.
It also plots the 45 degree line.
Notice that the two 𝑠𝑡-dependent closed loop functions that determine 𝑘𝑡+1 as functions of 𝑘𝑡 share the same rest point
(also called a fixed point) at 𝑘𝑡 = 0.5.
Evidently, the optimal decision rule in Markov state 2, in which the adjustment cost is lower, makes 𝑘𝑡+1 a flatter function
of 𝑘𝑡 in Markov state 2.
This happens because when 𝑘𝑡 is not at its fixed point, |𝑢𝑡,2| > |𝑢𝑡,2|, so that the decision-maker adjusts toward the fixed
point faster when the Markov state 𝑠𝑡 takes a value that makes it cheaper.

# Compute time series
T = 20
x0 = np.array([[0., 1.]]).T
x_path = ex1_a.compute_sequence(x0, ts_length=T)[0]

(continues on next page)
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(continued from previous page)

fig, ax = plt.subplots()
ax.plot(range(T), x_path[0, :-1])
ax.set_xlabel("$t$")
ax.set_ylabel("$k_t$")
ax.set_title("Optimal path of $k_t$")
plt.show()

Now we’ll depart from the preceding transition matrix that made the Markov state be strictly periodic.
We’ll begin with symmetric transition matrices of the form

Π2 = [1 − 𝜆 𝜆
𝜆 1 − 𝜆] .

λ = 0.8 # high λ
Π2 = np.array([[1-λ, λ],

[λ, 1-λ]])

ex1_b = qe.LQMarkov(Π2, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
ex1_b.stationary_values();
ex1_b.Fs

array([[[ 0.57291724, -0.28645862]],

[[ 0.74434525, -0.37217263]]])
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λ = 0.2 # low λ
Π2 = np.array([[1-λ, λ],

[λ, 1-λ]])

ex1_b = qe.LQMarkov(Π2, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
ex1_b.stationary_values();
ex1_b.Fs

array([[[ 0.59533259, -0.2976663 ]],

[[ 0.72818728, -0.36409364]]])

We can plot optimal decision rules associated with different 𝜆 values.

λ_vals = np.linspace(0., 1., 10)
F1 = np.empty((λ_vals.size, 2))
F2 = np.empty((λ_vals.size, 2))

for i, λ in enumerate(λ_vals):
Π2 = np.array([[1-λ, λ],

[λ, 1-λ]])

ex1_b = qe.LQMarkov(Π2, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
ex1_b.stationary_values();
F1[i, :] = ex1_b.Fs[0, 0, :]
F2[i, :] = ex1_b.Fs[1, 0, :]

for i, state_var in enumerate(state_vec1):
fig, ax = plt.subplots()
ax.plot(λ_vals, F1[:, i], label="$\overline{s}_1$", color="b")
ax.plot(λ_vals, F2[:, i], label="$\overline{s}_2$", color="r")

ax.set_xlabel("$\lambda$")
ax.set_ylabel("$F_{s_t}$")
ax.set_title(f"Coefficient on {state_var}")
ax.legend()
plt.show()
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Notice how the decision rules’ constants and slopes behave as functions of 𝜆.
Evidently, as the Markov chain becomes more nearly periodic (i.e., as 𝜆 → 1), the dynamic program adjusts capital faster
in the low adjustment cost Markov state to take advantage of what is only temporarily a more favorable time to invest.
Now let’s study situations in which the Markov transition matrix Π is asymmetric

Π3 = [1 − 𝜆 𝜆
𝛿 1 − 𝛿] .

λ, δ = 0.8, 0.2
Π3 = np.array([[1-λ, λ],

[δ, 1-δ]])

ex1_b = qe.LQMarkov(Π3, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
ex1_b.stationary_values();
ex1_b.Fs

array([[[ 0.57169781, -0.2858489 ]],

[[ 0.72749075, -0.36374537]]])

We can plot optimal decision rules for different 𝜆 and 𝛿 values.

λ_vals = np.linspace(0., 1., 10)
δ_vals = np.linspace(0., 1., 10)

(continues on next page)

13.5. Example 1 235



Dynamic Linear Economies

(continued from previous page)

λ_grid = np.empty((λ_vals.size, δ_vals.size))
δ_grid = np.empty((λ_vals.size, δ_vals.size))
F1_grid = np.empty((λ_vals.size, δ_vals.size, len(state_vec1)))
F2_grid = np.empty((λ_vals.size, δ_vals.size, len(state_vec1)))

for i, λ in enumerate(λ_vals):
λ_grid[i, :] = λ
δ_grid[i, :] = δ_vals
for j, δ in enumerate(δ_vals):

Π3 = np.array([[1-λ, λ],
[δ, 1-δ]])

ex1_b = qe.LQMarkov(Π3, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
ex1_b.stationary_values();
F1_grid[i, j, :] = ex1_b.Fs[0, 0, :]
F2_grid[i, j, :] = ex1_b.Fs[1, 0, :]

for i, state_var in enumerate(state_vec1):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# high adjustment cost, blue surface
ax.plot_surface(λ_grid, δ_grid, F1_grid[:, :, i], color="b")
# low adjustment cost, red surface
ax.plot_surface(λ_grid, δ_grid, F2_grid[:, :, i], color="r")
ax.set_xlabel("$\lambda$")
ax.set_ylabel("$\delta$")
ax.set_zlabel("$F_{s_t}$")
ax.set_title(f"coefficient on {state_var}")
plt.show()
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The following code defines a wrapper function that computes optimal decision rules for cases with different Markov
transition matrices
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def run(construct_func, vals_dict, state_vec):
"""
A Wrapper function that repeats the computation above
for different cases
"""

Qs, Rs, Ns, As, Bs, Cs, k_star = construct_func(**vals_dict)

# Symmetric Π
# Notice that pure periodic transition is a special case
# when λ=1
print("symmetric Π case:\n")
λ_vals = np.linspace(0., 1., 10)
F1 = np.empty((λ_vals.size, len(state_vec)))
F2 = np.empty((λ_vals.size, len(state_vec)))

for i, λ in enumerate(λ_vals):
Π2 = np.array([[1-λ, λ],

[λ, 1-λ]])

mplq = qe.LQMarkov(Π2, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
mplq.stationary_values();
F1[i, :] = mplq.Fs[0, 0, :]
F2[i, :] = mplq.Fs[1, 0, :]

for i, state_var in enumerate(state_vec):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(λ_vals, F1[:, i], label="$\overline{s}_1$", color="b")
ax.plot(λ_vals, F2[:, i], label="$\overline{s}_2$", color="r")

ax.set_xlabel("$\lambda$")
ax.set_ylabel("$F(\overline{s}_t)$")
ax.set_title(f"coefficient on {state_var}")
ax.legend()
plt.show()

# Plot optimal k*_{s_t} and k that optimal policies are targeting
# only for example 1
if state_vec == ["k", "constant term"]:

fig = plt.figure()
ax = fig.add_subplot(111)
for i in range(2):

F = [F1, F2][i]
c = ["b", "r"][i]
ax.plot([0, 1], [k_star[i], k_star[i]], "--",

color=c, label="$k^*(\overline{s}_"+str(i+1)+")$")
ax.plot(λ_vals, - F[:, 1] / F[:, 0], color=c,

label="$k^{target}(\overline{s}_"+str(i+1)+")$")

# Plot a vertical line at λ=0.5
ax.plot([0.5, 0.5], [min(k_star), max(k_star)], "-.")

ax.set_xlabel("$\lambda$")
ax.set_ylabel("$k$")
ax.set_title("Optimal k levels and k targets")
ax.text(0.5, min(k_star)+(max(k_star)-min(k_star))/20, "$\lambda=0.5$")

(continues on next page)
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(continued from previous page)

ax.legend(bbox_to_anchor=(1., 1.))
plt.show()

# Asymmetric Π
print("asymmetric Π case:\n")
δ_vals = np.linspace(0., 1., 10)

λ_grid = np.empty((λ_vals.size, δ_vals.size))
δ_grid = np.empty((λ_vals.size, δ_vals.size))
F1_grid = np.empty((λ_vals.size, δ_vals.size, len(state_vec)))
F2_grid = np.empty((λ_vals.size, δ_vals.size, len(state_vec)))

for i, λ in enumerate(λ_vals):
λ_grid[i, :] = λ
δ_grid[i, :] = δ_vals
for j, δ in enumerate(δ_vals):

Π3 = np.array([[1-λ, λ],
[δ, 1-δ]])

mplq = qe.LQMarkov(Π3, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
mplq.stationary_values();
F1_grid[i, j, :] = mplq.Fs[0, 0, :]
F2_grid[i, j, :] = mplq.Fs[1, 0, :]

for i, state_var in enumerate(state_vec):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(λ_grid, δ_grid, F1_grid[:, :, i], color="b")
ax.plot_surface(λ_grid, δ_grid, F2_grid[:, :, i], color="r")
ax.set_xlabel("$\lambda$")
ax.set_ylabel("$\delta$")
ax.set_zlabel("$F(\overline{s}_t)$")
ax.set_title(f"coefficient on {state_var}")
plt.show()

To illustrate the code with another example, we shall set 𝑓2,𝑠𝑡
and 𝑑𝑠𝑡

as constant functions and

𝑓1,1 = 0.5, 𝑓1,2 = 1

Thus, the sole role of the Markov jump state 𝑠𝑡 is to identify times in which capital is very productive and other times in
which it is less productive.
The example below reveals much about the structure of the optimum problem and optimal policies.
Only 𝑓1,𝑠𝑡

varies with 𝑠𝑡.

So there are different 𝑠𝑡-dependent optimal static 𝑘 level in different states 𝑘∗
𝑠𝑡

= 𝑓1,𝑠𝑡
2𝑓2,𝑠𝑡

, values of 𝑘 that maximize
one-period payoff functions in each state.
We denote a target 𝑘 level as 𝑘𝑡𝑎𝑟𝑔𝑒𝑡

𝑠𝑡 , the fixed point of the optimal policies in each state, given the value of 𝜆.
We call 𝑘𝑡𝑎𝑟𝑔𝑒𝑡

𝑠𝑡 a “target” because in each Markov state 𝑠𝑡, optimal policies are contraction mappings and will push 𝑘𝑡
towards a fixed point 𝑘𝑡𝑎𝑟𝑔𝑒𝑡

𝑠𝑡 .

When 𝜆 → 0, each Markov state becomes close to absorbing state and consequently 𝑘𝑡𝑎𝑟𝑔𝑒𝑡
𝑠𝑡 → 𝑘∗

𝑠𝑡
.

But when 𝜆 → 1, the Markov transition matrix becomes more nearly periodic, so the optimum decision rules target more
at the optimal 𝑘 level in the other state in order to enjoy higher expected payoff in the next period.
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The switch happens at 𝜆 = 0.5 when both states are equally likely to be reached.
Below we plot an additional figure that shows optimal 𝑘 levels in the two states Markov jump state and also how the
targeted 𝑘 levels change as 𝜆 changes.

run(construct_arrays1, {"f1_vals":[0.5, 1.]}, state_vec1)

symmetric Π case:
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asymmetric Π case:

242 Chapter 13. Markov Jump Linear Quadratic Dynamic Programming



Dynamic Linear Economies

Set 𝑓1,𝑠𝑡
and 𝑑𝑠𝑡

as constant functions and

𝑓2,1 = 0.5, 𝑓2,2 = 1

run(construct_arrays1, {"f2_vals":[0.5, 1.]}, state_vec1)

symmetric Π case:
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asymmetric Π case:
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13.6 Example 2

We now add to the example 1 setup another state variable 𝑤𝑡 that follows the evolution law

𝑤𝑡+1 = 𝛼0 (𝑠𝑡) + 𝜌 (𝑠𝑡) 𝑤𝑡 + 𝜎 (𝑠𝑡) 𝜖𝑡+1, 𝜖𝑡+1 ∼ 𝑁 (0, 1)

We think of 𝑤𝑡 as a rental rate or tax rate that the decision maker pays each period for 𝑘𝑡.
To capture this idea, we add to the decision-maker’s one-period payoff function the product of 𝑤𝑡 and 𝑘𝑡

𝑟(𝑠𝑡, 𝑘𝑡, 𝑤𝑡) = 𝑓1,𝑠𝑡
𝑘𝑡 − 𝑓2,𝑠𝑡

𝑘2
𝑡 − 𝑑𝑠𝑡

(𝑘𝑡+1 − 𝑘𝑡)2 − 𝑤𝑡𝑘𝑡,

We now let the continuous part of the state at time 𝑡 be 𝑥𝑡 = ⎡⎢
⎣

𝑘𝑡
1

𝑤𝑡

⎤⎥
⎦
and continue to set the control 𝑢𝑡 = 𝑘𝑡+1 − 𝑘𝑡.

We can write the one-period payoff function 𝑟 (𝑠𝑡, 𝑘𝑡, 𝑤𝑡) and the state-transition law as

𝑟 (𝑠𝑡, 𝑘𝑡, 𝑤𝑡) = 𝑓1 (𝑠𝑡) 𝑘𝑡 − 𝑓2 (𝑠𝑡) 𝑘2
𝑡 − 𝑑 (𝑠𝑡) (𝑘𝑡+1 − 𝑘𝑡)

2 − 𝑤𝑡𝑘𝑡

= −
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥′
𝑡
⎡⎢
⎣

𝑓2 (𝑠𝑡) − 𝑓1(𝑠𝑡)
2

1
2

− 𝑓1(𝑠𝑡)
2 0 0

1
2 0 0

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝑅(𝑠𝑡)

𝑥𝑡 + 𝑑 (𝑠𝑡)⏟
≡𝑄(𝑠𝑡)

𝑢2
𝑡

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

,

and

𝑥𝑡+1 = ⎡⎢
⎣

𝑘𝑡+1
1

𝑤𝑡+1

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
0 1 0
0 𝛼0 (𝑠𝑡) 𝜌 (𝑠𝑡)

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝐴(𝑠𝑡)

𝑥𝑡 + ⎡⎢
⎣

1
0
0
⎤⎥
⎦⏟

≡𝐵(𝑠𝑡)

𝑢𝑡 + ⎡⎢
⎣

0
0

𝜎 (𝑠𝑡)
⎤⎥
⎦⏟

≡𝐶(𝑠𝑡)

𝜖𝑡+1

def construct_arrays2(f1_vals=[1. ,1.],
f2_vals=[1., 1.],
d_vals=[1., 1.],
α0_vals=[1., 1.],
ρ_vals=[0.9, 0.9],
σ_vals=[1., 1.]):

"""
Construct matrices that maps the problem described in example 2
into a Markov jump linear quadratic dynamic programming problem.
"""

m = len(f1_vals)
n, k, j = 3, 1, 1

Rs = np.zeros((m, n, n))
Qs = np.zeros((m, k, k))
As = np.zeros((m, n, n))
Bs = np.zeros((m, n, k))
Cs = np.zeros((m, n, j))

for i in range(m):
Rs[i, 0, 0] = f2_vals[i]
Rs[i, 1, 0] = - f1_vals[i] / 2

(continues on next page)
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(continued from previous page)

Rs[i, 0, 1] = - f1_vals[i] / 2
Rs[i, 0, 2] = 1/2
Rs[i, 2, 0] = 1/2

Qs[i, 0, 0] = d_vals[i]

As[i, 0, 0] = 1
As[i, 1, 1] = 1
As[i, 2, 1] = α0_vals[i]
As[i, 2, 2] = ρ_vals[i]

Bs[i, :, :] = np.array([[1, 0, 0]]).T

Cs[i, :, :] = np.array([[0, 0, σ_vals[i]]]).T

Ns = None
k_star = None

return Qs, Rs, Ns, As, Bs, Cs, k_star

state_vec2 = ["k", "constant term", "w"]

Only 𝑑𝑠𝑡
depends on 𝑠𝑡.

run(construct_arrays2, {"d_vals":[1., 0.5]}, state_vec2)

symmetric Π case:
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asymmetric Π case:
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Only 𝑓1,𝑠𝑡
depends on 𝑠𝑡.

run(construct_arrays2, {"f1_vals":[0.5, 1.]}, state_vec2)

symmetric Π case:
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asymmetric Π case:
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Only 𝑓2,𝑠𝑡
depends on 𝑠𝑡.

run(construct_arrays2, {"f2_vals":[0.5, 1.]}, state_vec2)

symmetric Π case:
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asymmetric Π case:
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Only 𝛼0(𝑠𝑡) depends on 𝑠𝑡.

run(construct_arrays2, {"α0_vals":[0.5, 1.]}, state_vec2)

symmetric Π case:
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asymmetric Π case:

13.6. Example 2 265



Dynamic Linear Economies

266 Chapter 13. Markov Jump Linear Quadratic Dynamic Programming



Dynamic Linear Economies

Only 𝜌𝑠𝑡
depends on 𝑠𝑡.

run(construct_arrays2, {"ρ_vals":[0.5, 0.9]}, state_vec2)

symmetric Π case:
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asymmetric Π case:
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Only 𝜎𝑠𝑡
depends on 𝑠𝑡.

run(construct_arrays2, {"σ_vals":[0.5, 1.]}, state_vec2)

symmetric Π case:
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asymmetric Π case:
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13.7 More examples

The following lectures describe how Markov jump linear quadratic dynamic programming can be used to extend the
[Barro, 1979] model of optimal tax-smoothing and government debt in several interesting directions

1. How to Pay for a War: Part 1

2. How to Pay for a War: Part 2

3. How to Pay for a War: Part 3
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CHAPTER

FOURTEEN

HOW TO PAY FOR A WAR: PART 1

Contents

• How to Pay for a War: Part 1

– Reader’s Guide

– Public Finance Questions

– Barro (1979) Model

– Python Class to Solve Markov Jump Linear Quadratic Control Problems

– Barro Model with a Time-varying Interest Rate

In addition to what’s in Anaconda, this lecture will deploy quantecon:

!pip install --upgrade quantecon

14.1 Reader’s Guide

Let’s start with some standard imports:

import quantecon as qe
import numpy as np
import matplotlib.pyplot as plt

This lecture uses the method of Markov jump linear quadratic dynamic programming that is described in lecture
Markov Jump LQ dynamic programming to extend the [Barro, 1979] model of optimal tax-smoothing and government
debt in a particular direction.
This lecture has two sequels that offer further extensions of the Barro model

1. How to Pay for a War: Part 2

2. How to Pay for a War: Part 3

The extensions are modified versions of his 1979 model later suggested by Barro (1999 [Barro, 1999], 2003 [Barro and
McCleary, 2003]).
Barro’s original 1979 [Barro, 1979] model is about a government that borrows and lends in order to minimize an in-
tertemporal measure of distortions caused by taxes.
Technical tractability induced Barro [Barro, 1979] to assume that
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• the government trades only one-period risk-free debt, and
• the one-period risk-free interest rate is constant

By usingMarkov jump linear quadratic dynamic programmingwe can allow interest rates to move over time in empirically
interesting ways.
Also, by expanding the dimension of the state, we can add a maturity composition decision to the government’s problem.
It is by doing these two things that we extend Barro’s 1979 [Barro, 1979] model along lines he suggested in Barro (1999
[Barro, 1999], 2003 [Barro and McCleary, 2003]).
Barro (1979) [Barro, 1979] assumed

• that a government faces an exogenous sequence of expenditures that it must finance by a tax collection sequence
whose expected present value equals the initial debt it owes plus the expected present value of those expenditures.

• that the government wants to minimize the following measure of tax distortions: 𝐸0 ∑∞
𝑡=0 𝛽𝑡𝑇 2

𝑡 , where 𝑇𝑡 are total
tax collections and 𝐸0 is a mathematical expectation conditioned on time 0 information.

• that the government trades only one asset, a risk-free one-period bond.
• that the gross interest rate on the one-period bond is constant and equal to 𝛽−1, the reciprocal of the factor 𝛽 at
which the government discounts future tax distortions.

Barro’s model can be mapped into a discounted linear quadratic dynamic programming problem.
Partly inspired by Barro (1999) [Barro, 1999] and Barro (2003) [Barro and McCleary, 2003], our generalizations of
Barro’s (1979) [Barro, 1979] model assume

• that the government borrows or saves in the form of risk-free bonds of maturities 1, 2, … , 𝐻 .
• that interest rates on those bonds are time-varying and in particular, governed by a jointly stationary stochastic
process.

Our generalizations are designed to fit within a generalization of an ordinary linear quadratic dynamic programming
problem in which matrices that define the quadratic objective function and the state transition function are time-varying
and stochastic.
This generalization, known as aMarkov jump linear quadratic dynamic program, combines

• the computational simplicity of linear quadratic dynamic programming, and
• the ability of finite state Markov chains to represent interesting patterns of random variation.

We want the stochastic time variation in the matrices defining the dynamic programming problem to represent variation
over time in

• interest rates
• default rates
• roll over risks

As described inMarkov Jump LQ dynamic programming, the idea underlyingMarkov jump linear quadratic dynamic
programming is to replace the constant matrices defining a linear quadratic dynamic programming problem with
matrices that are fixed functions of an 𝑁 state Markov chain.
For infinite horizon problems, this leads to 𝑁 interrelated matrix Riccati equations that pin down 𝑁 value functions and
𝑁 linear decision rules, applying to the 𝑁 Markov states.
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14.2 Public Finance Questions

Barro’s 1979 [Barro, 1979] model is designed to answer questions such as
• Should a government finance an exogenous surge in government expenditures by raising taxes or borrowing?
• How does the answer to that first question depend on the exogenous stochastic process for government expenditures,
for example, on whether the surge in government expenditures can be expected to be temporary or permanent?

Barro’s 1999 [Barro, 1999] and 2003 [Barro and McCleary, 2003] models are designed to answer more fine-grained
questions such as

• What determines whether a government wants to issue short-term or long-term debt?
• How do roll-over risks affect that decision?
• How does the government’s long-short portfolio management decision depend on features of the exogenous stochas-
tic process for government expenditures?

Thus, both the simple and the more fine-grained versions of Barro’s models are ways of precisely formulating the classic
issue of How to pay for a war.
This lecture describes:

• An application of Markov jump LQ dynamic programming to a model in which a government faces exogenous
time-varying interest rates for issuing one-period risk-free debt.

A sequel to this lecture describes applies Markov LQ control to settings in which a government issues risk-free debt of
different maturities.

14.3 Barro (1979) Model

We begin by solving a version of the Barro (1979) [Barro, 1979] model by mapping it into the original LQ framework.
As mentioned in this lecture, the Barro model is mathematically isomorphic with the LQ permanent income model.
Let 𝑇𝑡 denote tax collections, 𝛽 a discount factor, 𝑏𝑡,𝑡+1 time 𝑡 + 1 goods that the government promises to pay at 𝑡, 𝐺𝑡
government purchases, 𝑝𝑡,𝑡+1 the number of time 𝑡 goods received per time 𝑡 + 1 goods promised.
Evidently, 𝑝𝑡,𝑡+1 is inversely related to appropriate corresponding gross interest rates on government debt.
In the spirit of Barro (1979) [Barro, 1979], the stochastic process of government expenditures is exogenous.
The government’s problem is to choose a plan for taxation and borrowing {𝑏𝑡+1, 𝑇𝑡}∞

𝑡=0 to minimize

𝐸0
∞

∑
𝑡=0

𝛽𝑡𝑇 2
𝑡

subject to the constraints

𝑇𝑡 + 𝑝𝑡,𝑡+1𝑏𝑡,𝑡+1 = 𝐺𝑡 + 𝑏𝑡−1,𝑡

𝐺𝑡 = 𝑈𝑔𝑧𝑡

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1

where 𝑤𝑡+1 ∼ 𝑁(0, 𝐼)
The variables 𝑇𝑡, 𝑏𝑡,𝑡+1 are control variables chosen at 𝑡, while 𝑏𝑡−1,𝑡 is an endogenous state variable inherited from the
past at time 𝑡 and 𝑝𝑡,𝑡+1 is an exogenous state variable at time 𝑡.
To begin, we assume that 𝑝𝑡,𝑡+1 is constant (and equal to 𝛽)
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• later we will extend the model to allow 𝑝𝑡,𝑡+1 to vary over time

To map into the LQ framework, we use 𝑥𝑡 = [𝑏𝑡−1,𝑡
𝑧𝑡

] as the state vector, and 𝑢𝑡 = 𝑏𝑡,𝑡+1 as the control variable.

Therefore, the (𝐴, 𝐵, 𝐶) matrices are defined by the state-transition law:

𝑥𝑡+1 = [0 0
0 𝐴22

] 𝑥𝑡 + [1
0] 𝑢𝑡 + [ 0

𝐶2
] 𝑤𝑡+1

To find the appropriate (𝑅, 𝑄, 𝑊) matrices, we note that 𝐺𝑡 and 𝑏𝑡−1,𝑡 can be written as appropriately defined functions
of the current state:

𝐺𝑡 = 𝑆𝐺𝑥𝑡 , 𝑏𝑡−1,𝑡 = 𝑆1𝑥𝑡

If we define 𝑀𝑡 = −𝑝𝑡,𝑡+1, and let 𝑆 = 𝑆𝐺 + 𝑆1, then we can write taxation as a function of the states and control using
the government’s budget constraint:

𝑇𝑡 = 𝑆𝑥𝑡 + 𝑀𝑡𝑢𝑡

It follows that the (𝑅, 𝑄, 𝑊) matrices are implicitly defined by:

𝑇 2
𝑡 = 𝑥′

𝑡𝑆′𝑆𝑥𝑡 + 𝑢′
𝑡𝑀 ′

𝑡 𝑀𝑡𝑢𝑡 + 2𝑢′
𝑡𝑀 ′

𝑡 𝑆𝑥𝑡

If we assume that 𝑝𝑡,𝑡+1 = 𝛽, then 𝑀𝑡 ≡ 𝑀 = −𝛽.
In this case, none of the LQ matrices are time varying, and we can use the original LQ framework.
We will implement this constant interest-rate version first, assuming that 𝐺𝑡 follows an AR(1) process:

𝐺𝑡+1 = ̄𝐺 + 𝜌𝐺𝑡 + 𝜎𝑤𝑡+1

To do this, we set 𝑧𝑡 = [ 1
𝐺𝑡

], and consequently:

𝐴22 = [ 1 0
̄𝐺 𝜌] , 𝐶2 = [0

𝜎]

# Model parameters
β, Gbar, ρ, σ = 0.95, 5, 0.8, 1

# Basic model matrices
A22 = np.array([[1, 0],

[Gbar, ρ],])

C2 = np.array([[0],
[σ]])

Ug = np.array([[0, 1]])

# LQ framework matrices
A_t = np.zeros((1, 3))
A_b = np.hstack((np.zeros((2, 1)), A22))
A = np.vstack((A_t, A_b))

B = np.zeros((3, 1))
B[0, 0] = 1

(continues on next page)
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(continued from previous page)

C = np.vstack((np.zeros((1, 1)), C2))

Sg = np.hstack((np.zeros((1, 1)), Ug))
S1 = np.zeros((1, 3))
S1[0, 0] = 1
S = S1 + Sg

M = np.array([[-β]])

R = S.T @ S
Q = M.T @ M
W = M.T @ S

# Small penalty on the debt required to implement the no-Ponzi scheme
R[0, 0] = R[0, 0] + 1e-9

We can now create an instance of LQ:

LQBarro = qe.LQ(Q, R, A, B, C=C, N=W, beta=β)
P, F, d = LQBarro.stationary_values()
x0 = np.array([[100, 1, 25]])

We can see the isomorphism by noting that consumption is a martingale in the permanent income model and that taxation
is a martingale in Barro’s model.
We can check this using the 𝐹 matrix of the LQ model.
Because 𝑢𝑡 = −𝐹𝑥𝑡, we have

𝑇𝑡 = 𝑆𝑥𝑡 + 𝑀𝑢𝑡 = (𝑆 − 𝑀𝐹)𝑥𝑡

and

𝑇𝑡+1 = (𝑆 − 𝑀𝐹)𝑥𝑡+1 = (𝑆 − 𝑀𝐹)(𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1) = (𝑆 − 𝑀𝐹)((𝐴 − 𝐵𝐹)𝑥𝑡 + 𝐶𝑤𝑡+1)

Therefore, the mathematical expectation of 𝑇𝑡+1 conditional on time 𝑡 information is

𝐸𝑡𝑇𝑡+1 = (𝑆 − 𝑀𝐹)(𝐴 − 𝐵𝐹)𝑥𝑡

Consequently, taxation is a martingale (𝐸𝑡𝑇𝑡+1 = 𝑇𝑡) if

(𝑆 − 𝑀𝐹)(𝐴 − 𝐵𝐹) = (𝑆 − 𝑀𝐹),

which holds in this case:

S - M @ F, (S - M @ F) @ (A - B @ F)

(array([[ 0.05000002, 19.79166502, 0.2083334 ]]),
array([[ 0.05000002, 19.79166504, 0.2083334 ]]))

This explains the fanning out of the conditional empirical distribution of taxation across time, computing by simulation
the Barro model a large number of times:
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T = 500
for i in range(250):

x, u, w = LQBarro.compute_sequence(x0, ts_length=T)
plt.plot(list(range(T+1)), ((S - M @ F) @ x)[0, :])

plt.xlabel('Time')
plt.ylabel('Taxation')
plt.show()

We can see a similar, but a smoother pattern, if we plot government debt over time.

T = 500
for i in range(250):

x, u, w = LQBarro.compute_sequence(x0, ts_length=T)
plt.plot(list(range(T+1)), x[0, :])

plt.xlabel('Time')
plt.ylabel('Govt Debt')
plt.show()
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14.4 Python Class to Solve Markov Jump Linear Quadratic Control
Problems

To implement the extension to the Barro model in which 𝑝𝑡,𝑡+1 varies over time, we must allow the M matrix to be
time-varying.
Our 𝑄 and 𝑊 matrices must also vary over time.
We can solve such a model using the LQMarkov class that solves Markov jump linear quandratic control problems as
described above.
The code for the class can be viewed here.
The class takes lists of matrices that corresponds to 𝑁 Markov states.
The value and policy functions are then found by iterating on a coupled system of matrix Riccati difference equations.
Optimal 𝑃𝑠, 𝐹𝑠, 𝑑𝑠 are stored as attributes.
The class also contains a “method” for simulating the model.
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14.5 Barro Model with a Time-varying Interest Rate

We can use the above class to implement a version of the Barro model with a time-varying interest rate. The simplest
way to extend the model is to allow the interest rate to take two possible values. We set:

𝑝1
𝑡,𝑡+1 = 𝛽 + 0.02 = 0.97

𝑝2
𝑡,𝑡+1 = 𝛽 − 0.017 = 0.933

Thus, the first Markov state has a low interest rate, and the second Markov state has a high interest rate.
We also need to specify a transition matrix for the Markov state.
We use:

Π = [0.8 0.2
0.2 0.8]

(so each Markov state is persistent, and there is an equal chance of moving from one state to the other)
The choice of parameters means that the unconditional expectation of 𝑝𝑡,𝑡+1 is 0.9515, higher than 𝛽(= 0.95).
If we were to set 𝑝𝑡,𝑡+1 = 0.9515 in the version of the model with a constant interest rate, government debt would
explode.

# Create list of matrices that corresponds to each Markov state
Π = np.array([[0.8, 0.2],

[0.2, 0.8]])

As = [A, A]
Bs = [B, B]
Cs = [C, C]
Rs = [R, R]

M1 = np.array([[-β - 0.02]])
M2 = np.array([[-β + 0.017]])

Q1 = M1.T @ M1
Q2 = M2.T @ M2
Qs = [Q1, Q2]
W1 = M1.T @ S
W2 = M2.T @ S
Ws = [W1, W2]

# create Markov Jump LQ DP problem instance
lqm = qe.LQMarkov(Π, Qs, Rs, As, Bs, Cs=Cs, Ns=Ws, beta=β)
lqm.stationary_values();

The decision rules are now dependent on the Markov state:

lqm.Fs[0]

array([[-0.98437712, 19.20516427, -0.8314215 ]])

lqm.Fs[1]
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array([[-1.01434301, 21.5847983 , -0.83851116]])

Simulating a large number of such economies over time reveals interesting dynamics.
Debt tends to stay low and stable but recurrently surges.

T = 2000
x0 = np.array([[1000, 1, 25]])
for i in range(250):

x, u, w, s = lqm.compute_sequence(x0, ts_length=T)
plt.plot(list(range(T+1)), x[0, :])

plt.xlabel('Time')
plt.ylabel('Govt Debt')
plt.show()
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CHAPTER

FIFTEEN

HOW TO PAY FOR A WAR: PART 2

Contents

• How to Pay for a War: Part 2

– An Application of Markov Jump Linear Quadratic Dynamic Programming

– Two example specifications

– One- and Two-period Bonds but No Restructuring

– Mapping into an LQ Markov Jump Problem

– Penalty on Different Issuance Across Maturities

– A Model with Restructuring

– Restructuring as a Markov Jump Linear Quadratic Control Problem

In addition to what’s in Anaconda, this lecture deploys the quantecon library:

!pip install --upgrade quantecon

15.1 An Application of Markov Jump Linear Quadratic Dynamic Pro-
gramming

This is a sequel to an earlier lecture.
We use a method introduced in lectureMarkov Jump LQ dynamic programming to implement suggestions by Barro (1999
[Barro, 1999], 2003 [Barro and McCleary, 2003]) for extending his classic 1979 model of tax smoothing.
Barro’s 1979 [Barro, 1979] model is about a government that borrows and lends in order to help it minimize an intertem-
poral measure of distortions caused by taxes.
Technically, Barro’s 1979 [Barro, 1979] model looks a lot like a consumption-smoothing model.
Our generalizations of his 1979 [Barro, 1979] model will also look like souped-up consumption-smoothing models.
Wanting tractability induced Barro in 1979 [Barro, 1979] to assume that

• the government trades only one-period risk-free debt, and
• the one-period risk-free interest rate is constant
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In our earlier lecture, we relaxed the second of these assumptions but not the first.
In particular, we used Markov jump linear quadratic dynamic programming to allow the exogenous interest rate to vary
over time.
In this lecture, we add a maturity composition decision to the government’s problem by expanding the dimension of the
state.
We assume

• that the government borrows or saves in the form of risk-free bonds of maturities 1, 2, … , 𝐻 .
• that interest rates on those bonds are time-varying and in particular are governed by a jointly stationary stochastic
process.

Let’s start with some standard imports:

import quantecon as qe
import numpy as np
import matplotlib.pyplot as plt

15.2 Two example specifications

We’ll describe two possible specifications
• In one, each period the government issues zero-coupon bonds of one- and two-period maturities and redeems them
only when they mature – in this version, the maturity structure of government debt at each date is partly inherited
from the past.

• In the second, the government redesigns the maturity structure of the debt each period.

15.3 One- and Two-period Bonds but No Restructuring

Let 𝑇𝑡 denote tax collections, 𝛽 a discount factor, 𝑏𝑡,𝑡+1 time 𝑡 + 1 goods that the government promises to pay at 𝑡, 𝑏𝑡,𝑡+2
time 𝑡 + 2 goods that the government promises to pay at time 𝑡, 𝐺𝑡 government purchases, 𝑝𝑡,𝑡+1 the number of time
𝑡 goods received per time 𝑡 + 1 goods promised, and 𝑝𝑡,𝑡+2 the number of time 𝑡 goods received per time 𝑡 + 2 goods
promised.
Evidently, 𝑝𝑡,𝑡+1, 𝑝𝑡,𝑡+2 are inversely related to appropriate corresponding gross interest rates on government debt.
In the spirit of Barro (1979) [Barro, 1979], government expenditures are governed by an exogenous stochastic process.
Given initial conditions 𝑏−2,0, 𝑏−1,0, 𝑧0, 𝑖0, where 𝑖0 is the initial Markov state, the government chooses a contingency
plan for {𝑏𝑡,𝑡+1, 𝑏𝑡,𝑡+2, 𝑇𝑡}∞

𝑡=0 to maximize.

−𝐸0
∞

∑
𝑡=0

𝛽𝑡 [𝑇 2
𝑡 + 𝑐1(𝑏𝑡,𝑡+1 − 𝑏𝑡,𝑡+2)2]
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subject to the constraints

𝑇𝑡 = 𝐺𝑡 + 𝑏𝑡−2,𝑡 + 𝑏𝑡−1,𝑡 − 𝑝𝑡,𝑡+2𝑏𝑡,𝑡+2 − 𝑝𝑡,𝑡+1𝑏𝑡,𝑡+1
𝐺𝑡 = 𝑈𝑔,𝑠𝑡

𝑧𝑡

𝑧𝑡+1 = 𝐴22,𝑠𝑡
𝑧𝑡 + 𝐶2,𝑠𝑡

𝑤𝑡+1

⎡
⎢
⎢
⎢
⎣

𝑝𝑡,𝑡+1
𝑝𝑡,𝑡+2
𝑈𝑔,𝑠𝑡
𝐴22,𝑠𝑡
𝐶2,𝑠𝑡

⎤
⎥
⎥
⎥
⎦

∼ functions of Markov state with transition matrix Π

Here 𝑤𝑡+1 ∼ 𝑁(0, 𝐼) and Π𝑖𝑗 is the probability that the Markov state moves from state 𝑖 to state 𝑗 in one period.
The variables 𝑇𝑡, 𝑏𝑡,𝑡+1, 𝑏𝑡,𝑡+2 are control variables chosen at 𝑡, while the variables 𝑏𝑡−1,𝑡, 𝑏𝑡−2,𝑡 are endogenous state
variables inherited from the past at time 𝑡 and 𝑝𝑡,𝑡+1, 𝑝𝑡,𝑡+2 are exogenous state variables at time 𝑡.
The parameter 𝑐1 imposes a penalty on the government’s issuing different quantities of one and two-period debt.
This penalty deters the government from taking large “long-short” positions in debt of different maturities. An example
below will show this in action.
As well as extending the model to allow for a maturity decision for government debt, we can also in principle allow the
matrices 𝑈𝑔,𝑠𝑡

, 𝐴22,𝑠𝑡
, 𝐶2,𝑠𝑡

to depend on the Markov state 𝑠𝑡.
Below, we will often adopt the convention that for matrices appearing in a linear state space, 𝐴𝑡 ≡ 𝐴𝑠𝑡

, 𝐶𝑡 ≡ 𝐶𝑠𝑡
and

so on, so that dependence on 𝑡 is always intermediated through the Markov state 𝑠𝑡.

15.4 Mapping into an LQ Markov Jump Problem

First, define

̂𝑏𝑡 = 𝑏𝑡−1,𝑡 + 𝑏𝑡−2,𝑡,

which is debt due at time 𝑡.
Then define the endogenous part of the state:

𝑏̄𝑡 = [ ̂𝑏𝑡
𝑏𝑡−1,𝑡+1

]

and the complete state

𝑥𝑡 = [𝑏̄𝑡
𝑧𝑡

]

and the control vector

𝑢𝑡 = [𝑏𝑡,𝑡+1
𝑏𝑡,𝑡+2

]

The endogenous part of state vector follows the law of motion:

[ ̂𝑏𝑡+1
𝑏𝑡,𝑡+2

] = [0 1
0 0] [ ̂𝑏𝑡

𝑏𝑡−1,𝑡+1
] + [1 0

0 1] [𝑏𝑡,𝑡+1
𝑏𝑡,𝑡+2

]

or

𝑏̄𝑡+1 = 𝐴11𝑏̄𝑡 + 𝐵1𝑢𝑡
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Define the following functions of the state

𝐺𝑡 = 𝑆𝐺,𝑡𝑥𝑡, ̂𝑏𝑡 = 𝑆1𝑥𝑡

and

𝑀𝑡 = [−𝑝𝑡,𝑡+1 −𝑝𝑡,𝑡+2]

where 𝑝𝑡,𝑡+1 is the discount on one period loans in the discrete Markov state at time 𝑡 and 𝑝𝑡,𝑡+2 is the discount on
two-period loans in the discrete Markov state.
Define

𝑆𝑡 = 𝑆𝐺,𝑡 + 𝑆1

Note that in discrete Markov state 𝑖

𝑇𝑡 = 𝑀𝑡𝑢𝑡 + 𝑆𝑡𝑥𝑡

It follows that

𝑇 2
𝑡 = 𝑥′

𝑡𝑆′
𝑡𝑆𝑡𝑥𝑡 + 𝑢′

𝑡𝑀 ′
𝑡 𝑀𝑡𝑢𝑡 + 2𝑢′

𝑡𝑀 ′
𝑡 𝑆𝑡𝑥𝑡

or

𝑇 2
𝑡 = 𝑥′

𝑡𝑅𝑡𝑥𝑡 + 𝑢′
𝑡𝑄𝑡𝑢𝑡 + 2𝑢′

𝑡𝑊𝑡𝑥𝑡

where

𝑅𝑡 = 𝑆′
𝑡𝑆𝑡, 𝑄𝑡 = 𝑀 ′

𝑡 𝑀𝑡, 𝑊𝑡 = 𝑀 ′
𝑡 𝑆𝑡

Because the payoff function also includes the penalty parameter on issuing debt of different maturities, we have:

𝑇 2
𝑡 + 𝑐1(𝑏𝑡,𝑡+1 − 𝑏𝑡,𝑡+2)2 = 𝑥′

𝑡𝑅𝑡𝑥𝑡 + 𝑢′
𝑡𝑄𝑡𝑢𝑡 + 2𝑢′

𝑡𝑊𝑡𝑥𝑡 + 𝑐1𝑢′
𝑡𝑄𝑐𝑢𝑡

where 𝑄𝑐 = [ 1 −1
−1 1 ]. Therefore, the overall 𝑄 matrix for the Markov jump LQ problem is:

𝑄𝑐
𝑡 = 𝑄𝑡 + 𝑐1𝑄𝑐

The law of motion of the state in all discrete Markov states 𝑖 is

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑡𝑤𝑡+1

where

𝐴𝑡 = [𝐴11 0
0 𝐴22,𝑡

] , 𝐵 = [𝐵1
0 ] , 𝐶𝑡 = [ 0

𝐶2,𝑡
]

Thus, in this problem all the matrices apart from 𝐵 may depend on the Markov state at time 𝑡.
As shown in the previous lecture, the LQMarkov class can solve Markov jump LQ problems when provided with the
𝐴, 𝐵, 𝐶, 𝑅, 𝑄, 𝑊 matrices for each Markov state.
The function below maps the primitive matrices and parameters from the above two-period model into the matrices that
the LQMarkov class requires:
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def LQ_markov_mapping(A22, C2, Ug, p1, p2, c1=0):

"""
Function which takes A22, C2, Ug, p_{t, t+1}, p_{t, t+2} and penalty
parameter c1, and returns the required matrices for the LQMarkov
model: A, B, C, R, Q, W.
This version uses the condensed version of the endogenous state.
"""

# Make sure all matrices can be treated as 2D arrays
A22 = np.atleast_2d(A22)
C2 = np.atleast_2d(C2)
Ug = np.atleast_2d(Ug)
p1 = np.atleast_2d(p1)
p2 = np.atleast_2d(p2)

# Find the number of states (z) and shocks (w)
nz, nw = C2.shape

# Create A11, B1, S1, S2, Sg, S matrices
A11 = np.zeros((2, 2))
A11[0, 1] = 1

B1 = np.eye(2)

S1 = np.hstack((np.eye(1), np.zeros((1, nz+1))))
Sg = np.hstack((np.zeros((1, 2)), Ug))
S = S1 + Sg

# Create M matrix
M = np.hstack((-p1, -p2))

# Create A, B, C matrices
A_T = np.hstack((A11, np.zeros((2, nz))))
A_B = np.hstack((np.zeros((nz, 2)), A22))
A = np.vstack((A_T, A_B))

B = np.vstack((B1, np.zeros((nz, 2))))

C = np.vstack((np.zeros((2, nw)), C2))

# Create Q^c matrix
Qc = np.array([[1, -1], [-1, 1]])

# Create R, Q, W matrices

R = S.T @ S
Q = M.T @ M + c1 * Qc
W = M.T @ S

return A, B, C, R, Q, W

With the above function, we can proceed to solve the model in two steps:
1. Use LQ_markov_mapping to map 𝑈𝑔,𝑡, 𝐴22,𝑡, 𝐶2,𝑡, 𝑝𝑡,𝑡+1, 𝑝𝑡,𝑡+2 into the𝐴, 𝐵, 𝐶, 𝑅, 𝑄, 𝑊 matrices for each

of the 𝑛 Markov states.
2. Use the LQMarkov class to solve the resulting n-state Markov jump LQ problem.
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15.5 Penalty on Different Issuance Across Maturities

To implement a simple example of the two-period model, we assume that 𝐺𝑡 follows an AR(1) process:

𝐺𝑡+1 = ̄𝐺 + 𝜌𝐺𝑡 + 𝜎𝑤𝑡+1

To do this, we set 𝑧𝑡 = [ 1
𝐺𝑡

], and consequently:

𝐴22 = [ 1 0
̄𝐺 𝜌] , 𝐶2 = [0

𝜎] , 𝑈𝑔 = [0 1]

Therefore, in this example, 𝐴22, 𝐶2 and 𝑈𝑔 are not time-varying.
We will assume that there are two Markov states, one with a flatter yield curve, and one with a steeper yield curve. In
state 1, prices are:

𝑝1
𝑡,𝑡+1 = 𝛽 , 𝑝1

𝑡,𝑡+2 = 𝛽2 − 0.02

and in state 2, prices are:

𝑝2
𝑡,𝑡+1 = 𝛽 , 𝑝2

𝑡,𝑡+2 = 𝛽2 + 0.02

We first solve the model with no penalty parameter on different issuance across maturities, i.e. 𝑐1 = 0.
We also need to specify a transition matrix for the Markov state, we use:

Π = [0.9 0.1
0.1 0.9]

Thus, each Markov state is persistent, and there is an equal chance of moving from one to the other.

# Model parameters
β, Gbar, ρ, σ, c1 = 0.95, 5, 0.8, 1, 0
p1, p2, p3, p4 = β, β**2 - 0.02, β, β**2 + 0.02

# Basic model matrices
A22 = np.array([[1, 0], [Gbar, ρ] ,])
C_2 = np.array([[0], [σ]])
Ug = np.array([[0, 1]])

A1, B1, C1, R1, Q1, W1 = LQ_markov_mapping(A22, C_2, Ug, p1, p2, c1)
A2, B2, C2, R2, Q2, W2 = LQ_markov_mapping(A22, C_2, Ug, p3, p4, c1)

# Small penalties on debt required to implement no-Ponzi scheme
R1[0, 0] = R1[0, 0] + 1e-9
R2[0, 0] = R2[0, 0] + 1e-9

# Construct lists of matrices correspond to each state
As = [A1, A2]
Bs = [B1, B2]
Cs = [C1, C2]
Rs = [R1, R2]
Qs = [Q1, Q2]
Ws = [W1, W2]

Π = np.array([[0.9, 0.1],

(continues on next page)
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(continued from previous page)

[0.1, 0.9]])

# Construct and solve the model using the LQMarkov class
lqm = qe.LQMarkov(Π, Qs, Rs, As, Bs, Cs=Cs, Ns=Ws, beta=β)
lqm.stationary_values()

# Simulate the model
x0 = np.array([[100, 50, 1, 10]])
x, u, w, t = lqm.compute_sequence(x0, ts_length=300)

# Plot of one and two-period debt issuance
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(u[0, :])
ax1.set_title('One-period debt issuance')
ax1.set_xlabel('Time')
ax2.plot(u[1, :])
ax2.set_title('Two-period debt issuance')
ax2.set_xlabel('Time')
plt.show()

The above simulations show that when no penalty is imposed on different issuances across maturities, the government has
an incentive to take large “long-short” positions in debt of different maturities.
To prevent such an outcome, we now set 𝑐1 = 0.01.
This penalty is enough to ensure that the government issues positive quantities of both one and two-period debt:

# Put small penalty on different issuance across maturities
c1 = 0.01

A1, B1, C1, R1, Q1, W1 = LQ_markov_mapping(A22, C_2, Ug, p1, p2, c1)
A2, B2, C2, R2, Q2, W2 = LQ_markov_mapping(A22, C_2, Ug, p3, p4, c1)

# Small penalties on debt required to implement no-Ponzi scheme
R1[0, 0] = R1[0, 0] + 1e-9
R2[0, 0] = R2[0, 0] + 1e-9

# Construct lists of matrices
As = [A1, A2]
Bs = [B1, B2]

(continues on next page)
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(continued from previous page)

Cs = [C1, C2]
Rs = [R1, R2]
Qs = [Q1, Q2]
Ws = [W1, W2]

# Construct and solve the model using the LQMarkov class
lqm2 = qe.LQMarkov(Π, Qs, Rs, As, Bs, Cs=Cs, Ns=Ws, beta=β)
lqm2.stationary_values()

# Simulate the model
x, u, w, t = lqm2.compute_sequence(x0, ts_length=300)

# Plot of one and two-period debt issuance
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(u[0, :])
ax1.set_title('One-period debt issuance')
ax1.set_xlabel('Time')
ax2.plot(u[1, :])
ax2.set_title('Two-period debt issuance')
ax2.set_xlabel('Time')
plt.show()

15.6 A Model with Restructuring

This model alters two features of the previous model:
1. The maximum horizon of government debt is now extended to a general H periods.
2. The government is able to redesign the maturity structure of debt every period.

We impose a cost on adjusting issuance of each maturity by amending the payoff function to become:

𝑇 2
𝑡 +

𝐻−1
∑
𝑗=0

𝑐2(𝑏𝑡−1
𝑡+𝑗 − 𝑏𝑡

𝑡+𝑗+1)2

The government’s budget constraint is now:

𝑇𝑡 +
𝐻

∑
𝑗=1

𝑝𝑡,𝑡+𝑗𝑏𝑡
𝑡+𝑗 = 𝑏𝑡−1

𝑡 +
𝐻−1
∑
𝑗=1

𝑝𝑡,𝑡+𝑗𝑏𝑡−1
𝑡+𝑗 + 𝐺𝑡
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To map this into the Markov Jump LQ framework, we define state and control variables.
Let:

𝑏̄𝑡 =
⎡
⎢⎢
⎣

𝑏𝑡−1
𝑡

𝑏𝑡−1
𝑡+1
⋮

𝑏𝑡−1
𝑡+𝐻−1

⎤
⎥⎥
⎦

, 𝑢𝑡 =
⎡
⎢⎢
⎣

𝑏𝑡
𝑡+1

𝑏𝑡
𝑡+2
⋮

𝑏𝑡
𝑡+𝐻

⎤
⎥⎥
⎦

Thus, 𝑏̄𝑡 is the endogenous state (debt issued last period) and 𝑢𝑡 is the control (debt issued today).
As before, we will also have the exogenous state 𝑧𝑡, which determines government spending.
Therefore, the full state is:

𝑥𝑡 = [𝑏̄𝑡
𝑧𝑡

]

We also define a vector 𝑝𝑡 that contains the time 𝑡 price of goods in period 𝑡 + 𝑗:

𝑝𝑡 =
⎡
⎢⎢
⎣

𝑝𝑡,𝑡+1
𝑝𝑡,𝑡+2

⋮
𝑝𝑡,𝑡+𝐻

⎤
⎥⎥
⎦

Finally, we define three useful matrices 𝑆𝑠, 𝑆𝑥, ̃𝑆𝑥:

⎡
⎢⎢
⎣

𝑝𝑡,𝑡+1
𝑝𝑡,𝑡+2

⋮
𝑝𝑡,𝑡+𝐻−1

⎤
⎥⎥
⎦

= 𝑆𝑠𝑝𝑡 where 𝑆𝑠 =
⎡
⎢⎢
⎣

1 0 0 ⋯ 0
0 1 0 ⋯ 0
⋮ ⋱
0 0 ⋯ 1 0

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝑏𝑡−1
𝑡+1

𝑏𝑡−1
𝑡+2
⋮

𝑏𝑡−1
𝑡+𝑇 −1

⎤
⎥⎥
⎦

= 𝑆𝑥𝑏̄𝑡 where 𝑆𝑥 =
⎡
⎢⎢
⎣

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋱
0 0 ⋯ 0 1

⎤
⎥⎥
⎦

𝑏𝑡−1
𝑡 = ̃𝑆𝑥𝑏̄𝑡 where ̃𝑆𝑥 = [1 0 0 ⋯ 0]

In terms of dimensions, the first two matrices defined above are (𝐻 − 1) × 𝐻 .
The last is 1 × 𝐻
We can now write the government’s budget constraint in matrix notation. Rearranging the government budget constraint
gives:

𝑇𝑡 = 𝑏𝑡−1
𝑡 +

𝐻−1
∑
𝑗=1

𝑝𝑡
𝑡+𝑗𝑏𝑡−1

𝑡+𝑗 + 𝐺𝑡 −
𝐻

∑
𝑗=1

𝑝𝑡
𝑡+𝑗𝑏𝑡

𝑡+𝑗

or

𝑇𝑡 = ̃𝑆𝑥𝑏̄𝑡 + (𝑆𝑠𝑝𝑡) ⋅ (𝑆𝑥𝑏̄𝑡) + 𝑈𝑔𝑧𝑡 − 𝑝𝑡 ⋅ 𝑢𝑡

If we want to write this in terms of the full state, we have:

𝑇𝑡 = [( ̃𝑆𝑥 + 𝑝′
𝑡𝑆′

𝑠𝑆𝑥) 𝑈𝑔] 𝑥𝑡 − 𝑝′
𝑡𝑢𝑡

To simplify the notation, let 𝑆𝑡 = [( ̃𝑆𝑥 + 𝑝𝑡’𝑆𝑠’𝑆𝑥) 𝑈𝑔].
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Then

𝑇𝑡 = 𝑆𝑡𝑥𝑡 − 𝑝′
𝑡𝑢𝑡

Therefore

𝑇 2
𝑡 = 𝑥′

𝑡𝑅𝑡𝑥𝑡 + 𝑢′
𝑡𝑄𝑡𝑢𝑡 + 2𝑢′

𝑡𝑊𝑡𝑥𝑡

where

𝑅𝑡 = 𝑆′
𝑡𝑆𝑡, 𝑄𝑡 = 𝑝𝑡𝑝′

𝑡, 𝑊𝑡 = −𝑝𝑡𝑆𝑡

where to economize on notation we adopt the convention that for the linear state matrices 𝑅𝑡 ≡ 𝑅𝑠𝑡
, 𝑄𝑡 ≡ 𝑊𝑠𝑡

and so
on.
We’ll continue to use this convention also for the linear state matrices 𝐴, 𝐵, 𝑊 and so on below.
Because the payoff function also includes the penalty parameter for rescheduling, we have:

𝑇 2
𝑡 +

𝐻−1
∑
𝑗=0

𝑐2(𝑏𝑡−1
𝑡+𝑗 − 𝑏𝑡

𝑡+𝑗+1)2 = 𝑇 2
𝑡 + 𝑐2(𝑏̄𝑡 − 𝑢𝑡)′(𝑏̄𝑡 − 𝑢𝑡)

Because the complete state is 𝑥𝑡 and not 𝑏̄𝑡, we rewrite this as:

𝑇 2
𝑡 + 𝑐2(𝑆𝑐𝑥𝑡 − 𝑢𝑡)′(𝑆𝑐𝑥𝑡 − 𝑢𝑡)

where 𝑆𝑐 = [𝐼 0]
Multiplying this out gives:

𝑇 2
𝑡 + 𝑐2𝑥′

𝑡𝑆′
𝑐𝑆𝑐𝑥𝑡 − 2𝑐2𝑢′

𝑡𝑆𝑐𝑥𝑡 + 𝑐2𝑢′
𝑡𝑢𝑡

Therefore, with the cost term, we must amend our 𝑅, 𝑄, 𝑊 matrices as follows:

𝑅𝑐
𝑡 = 𝑅𝑡 + 𝑐2𝑆′

𝑐𝑆𝑐

𝑄𝑐
𝑡 = 𝑄𝑡 + 𝑐2𝐼

𝑊 𝑐
𝑡 = 𝑊𝑡 − 𝑐2𝑆𝑐

To finish mapping into the Markov jump LQ setup, we need to construct the law of motion for the full state.
This is simpler than in the previous setup, as we now have 𝑏̄𝑡+1 = 𝑢𝑡.
Therefore:

𝑥𝑡+1 ≡ [𝑏̄𝑡+1
𝑧𝑡+1

] = 𝐴𝑡𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑡𝑤𝑡+1

where

𝐴𝑡 = [0 0
0 𝐴22,𝑡

] , 𝐵 = [𝐼
0] , 𝐶 = [ 0

𝐶2,𝑡
]

This completes the mapping into a Markov jump LQ problem.
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15.7 Restructuring as aMarkov Jump Linear Quadratic Control Prob-
lem

As with the previous model, we can use a function to map the primitives of the model with restructuring into the matrices
that the LQMarkov class requires:

def LQ_markov_mapping_restruct(A22, C2, Ug, T, p_t, c=0):

"""
Function which takes A22, C2, T, p_t, c and returns the
required matrices for the LQMarkov model: A, B, C, R, Q, W
Note, p_t should be a T by 1 matrix
c is the rescheduling cost (a scalar)
This version uses the condensed version of the endogenous state
"""

# Make sure all matrices can be treated as 2D arrays
A22 = np.atleast_2d(A22)
C2 = np.atleast_2d(C2)
Ug = np.atleast_2d(Ug)
p_t = np.atleast_2d(p_t)

# Find the number of states (z) and shocks (w)
nz, nw = C2.shape

# Create Sx, tSx, Ss, S_t matrices (tSx stands for \tilde S_x)
Ss = np.hstack((np.eye(T-1), np.zeros((T-1, 1))))
Sx = np.hstack((np.zeros((T-1, 1)), np.eye(T-1)))
tSx = np.zeros((1, T))
tSx[0, 0] = 1

S_t = np.hstack((tSx + p_t.T @ Ss.T @ Sx, Ug))

# Create A, B, C matrices
A_T = np.hstack((np.zeros((T, T)), np.zeros((T, nz))))
A_B = np.hstack((np.zeros((nz, T)), A22))
A = np.vstack((A_T, A_B))

B = np.vstack((np.eye(T), np.zeros((nz, T))))
C = np.vstack((np.zeros((T, nw)), C2))

# Create cost matrix Sc
Sc = np.hstack((np.eye(T), np.zeros((T, nz))))

# Create R_t, Q_t, W_t matrices

R_c = S_t.T @ S_t + c * Sc.T @ Sc
Q_c = p_t @ p_t.T + c * np.eye(T)
W_c = -p_t @ S_t - c * Sc

return A, B, C, R_c, Q_c, W_c
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15.7.1 Example with Restructuring

As an example of the model with restructuring, consider this model where 𝐻 = 3.
We will assume that there are two Markov states, one with a flatter yield curve, and one with a steeper yield curve.
In state 1, prices are:

𝑝1
𝑡,𝑡+1 = 0.9695 , 𝑝1

𝑡,𝑡+2 = 0.902 , 𝑝1
𝑡,𝑡+3 = 0.8369

and in state 2, prices are:

𝑝2
𝑡,𝑡+1 = 0.9295 , 𝑝2

𝑡,𝑡+2 = 0.902 , 𝑝2
𝑡,𝑡+3 = 0.8769

We will assume the same transition matrix and 𝐺𝑡 process as above

# New model parameters
H = 3
p1 = np.array([[0.9695], [0.902], [0.8369]])
p2 = np.array([[0.9295], [0.902], [0.8769]])
Pi = np.array([[0.9, 0.1], [0.1, 0.9]])

# Put penalty on different issuance across maturities
c2 = 0.5

A1, B1, C1, R1, Q1, W1 = LQ_markov_mapping_restruct(A22, C_2, Ug, H, p1, c2)
A2, B2, C2, R2, Q2, W2 = LQ_markov_mapping_restruct(A22, C_2, Ug, H, p2, c2)

# Small penalties on debt required to implement no-Ponzi scheme
R1[0, 0] = R1[0, 0] + 1e-9
R1[1, 1] = R1[1, 1] + 1e-9
R1[2, 2] = R1[2, 2] + 1e-9
R2[0, 0] = R2[0, 0] + 1e-9
R2[1, 1] = R2[1, 1] + 1e-9
R2[2, 2] = R2[2, 2] + 1e-9

# Construct lists of matrices
As = [A1, A2]
Bs = [B1, B2]
Cs = [C1, C2]
Rs = [R1, R2]
Qs = [Q1, Q2]
Ws = [W1, W2]

# Construct and solve the model using the LQMarkov class
lqm3 = qe.LQMarkov(Π, Qs, Rs, As, Bs, Cs=Cs, Ns=Ws, beta=β)
lqm3.stationary_values()

x0 = np.array([[5000, 5000, 5000, 1, 10]])
x, u, w, t = lqm3.compute_sequence(x0, ts_length=300)

# Plots of different maturities debt issuance

fig, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, figsize=(11, 3))
ax1.plot(u[0, :])
ax1.set_title('One-period debt issuance')
ax1.set_xlabel('Time')

(continues on next page)
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(continued from previous page)

ax2.plot(u[1, :])
ax2.set_title('Two-period debt issuance')
ax2.set_xlabel('Time')
ax3.plot(u[2, :])
ax3.set_title('Three-period debt issuance')
ax3.set_xlabel('Time')
ax4.plot(u[0, :] + u[1, :] + u[2, :])
ax4.set_title('Total debt issuance')
ax4.set_xlabel('Time')
plt.tight_layout()
plt.show()

# Plot share of debt issuance that is short-term

fig, ax = plt.subplots()
ax.plot((u[0, :] / (u[0, :] + u[1, :] + u[2, :])))
ax.set_title('One-period debt issuance share')
ax.set_xlabel('Time')
plt.show()
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In addition to what’s in Anaconda, this lecture deploys the quantecon library:

!pip install --upgrade quantecon

16.1 Another Application of Markov Jump Linear Quadratic Dynamic
Programming

This is another sequel to an earlier lecture.
We again use a method introduced in lecture Markov Jump LQ dynamic programming to implement some ideas Barro
(1999 [Barro, 1999], 2003 [Barro and McCleary, 2003]) that extend his classic 1979 [Barro, 1979] model of tax smooth-
ing.
Barro’s 1979 [Barro, 1979] model is about a government that borrows and lends in order to help it minimize an intertem-
poral measure of distortions caused by taxes.
Technically, Barro’s 1979 [Barro, 1979] model looks a lot like a consumption-smoothing model.
Our generalizations of his 1979 model will also look like souped-up consumption-smoothing models.
In this lecture, we describe a tax-smoothing problem of a government that faces roll-over risk.
Let’s start with some standard imports:

import quantecon as qe
import numpy as np
import matplotlib.pyplot as plt
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16.2 Roll-Over Risk

Let 𝑇𝑡 denote tax collections, 𝛽 a discount factor, 𝑏𝑡,𝑡+1 time 𝑡 + 1 goods that the government promises to pay at 𝑡, 𝐺𝑡
government purchases, 𝑝𝑡

𝑡+1 the number of time 𝑡 goods received per time 𝑡 + 1 goods promised.
The stochastic process of government expenditures is exogenous.
The government’s problem is to choose a plan for borrowing and tax collections {𝑏𝑡+1, 𝑇𝑡}∞

𝑡=0 to minimize

𝐸0
∞

∑
𝑡=0

𝛽𝑡𝑇 2
𝑡

subject to the constraints

𝑇𝑡 + 𝑝𝑡
𝑡+1𝑏𝑡,𝑡+1 = 𝐺𝑡 + 𝑏𝑡−1,𝑡

𝐺𝑡 = 𝑈𝑔,𝑡𝑧𝑡

𝑧𝑡+1 = 𝐴22,𝑡𝑧𝑡 + 𝐶2,𝑡𝑤𝑡+1

where 𝑤𝑡+1 ∼ 𝑁(0, 𝐼). The variables 𝑇𝑡, 𝑏𝑡,𝑡+1 are control variables chosen at 𝑡, while 𝑏𝑡−1,𝑡 is an endogenous state
variable inherited from the past at time 𝑡 and 𝑝𝑡

𝑡+1 is an exogenous state variable at time 𝑡.
This is the same set-up as used in this lecture.
We will consider a situation in which the government faces “roll-over risk”.
Specifically, we shut down the government’s ability to borrow in one of the Markov states.

16.3 A Dead End

A first thought for how to implement this might be to allow 𝑝𝑡
𝑡+1 to vary over time with:

𝑝𝑡
𝑡+1 = 𝛽

in Markov state 1 and

𝑝𝑡
𝑡+1 = 0

in Markov state 2.
Consequently, in the second Markov state, the government is unable to borrow, and the budget constraint becomes 𝑇𝑡 =
𝐺𝑡 + 𝑏𝑡−1,𝑡.
However, if this is the only adjustment we make in our linear-quadratic model, the government will not set 𝑏𝑡,𝑡+1 = 0,
which is the outcome we want to express roll-over risk in period 𝑡.
Instead, the government would have an incentive to set 𝑏𝑡,𝑡+1 to a large negative number in state 2 – it would accumulate
large amounts of assets to bring into period 𝑡 + 1 because that is cheap (Our Riccati equations will discover this for us!).
Thus, we must represent “roll-over risk” some other way.
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16.4 Better Representation of Roll-Over Risk

To force the government to set 𝑏𝑡,𝑡+1 = 0, we can instead extend the model to have four Markov states:
1. Good today, good yesterday
2. Good today, bad yesterday
3. Bad today, good yesterday
4. Bad today, bad yesterday

where good is a state in which effectively the government can issue debt and bad is a state in which effectively the
government can’t issue debt.
We’ll explain what effectively means shortly.
We now set

𝑝𝑡
𝑡+1 = 𝛽

in all states.
In addition – and this is important because it defines what we mean by effectively – we put a large penalty on the 𝑏𝑡−1,𝑡
element of the state vector in states 2 and 4.
This will prevent the government from wishing to issue any debt in states 3 or 4 because it would experience a large
penalty from doing so in the next period.
The transition matrix for this formulation is:

Π =
⎡
⎢⎢
⎣

0.95 0 0.05 0
0.95 0 0.05 0

0 0.9 0 0.1
0 0.9 0 0.1

⎤
⎥⎥
⎦

This transition matrix ensures that the Markov state cannot move, for example, from state 3 to state 1.
Because state 3 is “bad today”, the next period cannot have “good yesterday”.

# Model parameters
β, Gbar, ρ, σ = 0.95, 5, 0.8, 1

# Basic model matrices
A22 = np.array([[1, 0], [Gbar, ρ], ])
C2 = np.array([[0], [σ]])
Ug = np.array([[0, 1]])

# LQ framework matrices
A_t = np.zeros((1, 3))
A_b = np.hstack((np.zeros((2, 1)), A22))
A = np.vstack((A_t, A_b))

B = np.zeros((3, 1))
B[0, 0] = 1

C = np.vstack((np.zeros((1, 1)), C2))

Sg = np.hstack((np.zeros((1, 1)), Ug))
S1 = np.zeros((1, 3))

(continues on next page)
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S1[0, 0] = 1
S = S1 + Sg

R = S.T @ S

# Large penalty on debt in R2 to prevent borrowing in a bad state
R1 = np.copy(R)
R2 = np.copy(R)
R1[0, 0] = R[0, 0] + 1e-9
R2[0, 0] = R[0, 0] + 1e12

M = np.array([[-β]])
Q = M.T @ M
W = M.T @ S

Π = np.array([[0.95, 0, 0.05, 0],
[0.95, 0, 0.05, 0],
[0, 0.9, 0, 0.1],
[0, 0.9, 0, 0.1]])

# Construct lists of matrices that correspond to each state
As = [A, A, A, A]
Bs = [B, B, B, B]
Cs = [C, C, C, C]
Rs = [R1, R2, R1, R2]
Qs = [Q, Q, Q, Q]
Ws = [W, W, W, W]

lqm = qe.LQMarkov(Π, Qs, Rs, As, Bs, Cs=Cs, Ns=Ws, beta=β)
lqm.stationary_values();

This model is simulated below, using the same process for 𝐺𝑡 as in this lecture.
When 𝑝𝑡

𝑡+1 = 𝛽 government debt fluctuates around zero.
The spikes in the series for taxation show periods when the government is unable to access financial markets: positive
spikes occur when debt is positive, and the government must raise taxes in the current period.
Negative spikes occur when the government has positive asset holdings.
An inability to use financial markets in the next period means that the government uses those assets to lower taxation
today.

x0 = np.array([[0, 1, 25]])
T = 300
x, u, w, state = lqm.compute_sequence(x0, ts_length=T)

# Calculate taxation each period from the budget constraint and the Markov state
tax = np.zeros([T, 1])
for i in range(T):

tax[i, :] = S @ x[:, i] + M @ u[:, i]

# Plot of debt issuance and taxation
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 3))
ax1.plot(x[0, :])
ax1.set_title('One-period debt issuance')
ax1.set_xlabel('Time')

(continues on next page)
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ax2.plot(tax)
ax2.set_title('Taxation')
ax2.set_xlabel('Time')
plt.show()

We can adjust the model so that, rather than having debt fluctuate around zero, the government is a debtor in every period
we allow it to borrow.
To accomplish this, we simply raise 𝑝𝑡

𝑡+1 to 𝛽 + 0.02 = 0.97.

M = np.array([[-β - 0.02]])

Q = M.T @ M
W = M.T @ S

# Construct lists of matrices
As = [A, A, A, A]
Bs = [B, B, B, B]
Cs = [C, C, C, C]
Rs = [R1, R2, R1, R2]
Qs = [Q, Q, Q, Q]
Ws = [W, W, W, W]

lqm2 = qe.LQMarkov(Π, Qs, Rs, As, Bs, Cs=Cs, Ns=Ws, beta=β)
x, u, w, state = lqm2.compute_sequence(x0, ts_length=T)

# Calculate taxation each period from the budget constraint and the
# Markov state
tax = np.zeros([T, 1])
for i in range(T):

tax[i, :] = S @ x[:, i] + M @ u[:, i]

# Plot of debt issuance and taxation
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 3))
ax1.plot(x[0, :])
ax1.set_title('One-period debt issuance')
ax1.set_xlabel('Time')
ax2.plot(tax)
ax2.set_title('Taxation')
ax2.set_xlabel('Time')
plt.show()
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With a lower interest rate, the government has an incentive to increase debt over time.
However, with “roll-over risk”, debt is recurrently reset to zero and taxes spike up.
Consequently, the government is wary of letting debt get too high, due to the high costs of a “sudden stop”.
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In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

17.1 Overview

In this lecture, we study optimal fiscal policy in a linear quadratic setting.
We modify a model of Robert Lucas and Nancy Stokey [Lucas and Stokey, 1983] so that convenient formulas for solving
linear-quadratic models can be applied.
The economy consists of a representative household and a benevolent government.
The government finances an exogenous stream of government purchases with state-contingent loans and a linear tax on
labor income.
A linear tax is sometimes called a flat-rate tax.
The household maximizes utility by choosing paths for consumption and labor, taking prices and the government’s tax
rate and borrowing plans as given.
Maximum attainable utility for the household depends on the government’s tax and borrowing plans.
The Ramsey problem [Ramsey, 1927] is to choose tax and borrowing plans that maximize the household’s welfare, taking
the household’s optimizing behavior as given.
There is a large number of competitive equilibria indexed by different government fiscal policies.
The Ramsey planner chooses the best competitive equilibrium.
We want to study the dynamics of tax rates, tax revenues, government debt under a Ramsey plan.
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Because the Lucas and Stokey model features state-contingent government debt, the government debt dynamics differ
substantially from those in a model of Robert Barro [Barro, 1979].
The treatment given here closely follows this manuscript, prepared by Thomas J. Sargent and Francois R. Velde.
We cover only the key features of the problem in this lecture, leaving you to refer to that source for additional results and
intuition.
We’ll need the following imports:

import sys
import numpy as np
import matplotlib.pyplot as plt
from numpy import sqrt, eye, zeros, cumsum
from numpy.random import randn
import scipy.linalg
from collections import namedtuple
from quantecon import nullspace, mc_sample_path, var_quadratic_sum

17.1.1 Model Features

• Linear quadratic (LQ) model
• Representative household
• Stochastic dynamic programming over an infinite horizon
• Distortionary taxation

17.2 The Ramsey Problem

We begin by outlining the key assumptions regarding technology, households and the government sector.

17.2.1 Technology

Labor can be converted one-for-one into a single, non-storable consumption good.
In the usual spirit of the LQ model, the amount of labor supplied in each period is unrestricted.
This is unrealistic, but helpful when it comes to solving the model.
Realistic labor supply can be induced by suitable parameter values.

17.2.2 Households

Consider a representative household who chooses a path {ℓ𝑡, 𝑐𝑡} for labor and consumption to maximize

−𝔼1
2

∞
∑
𝑡=0

𝛽𝑡 [(𝑐𝑡 − 𝑏𝑡)2 + ℓ2
𝑡 ] (17.1)

subject to the budget constraint

𝔼
∞

∑
𝑡=0

𝛽𝑡𝑝0
𝑡 [𝑑𝑡 + (1 − 𝜏𝑡)ℓ𝑡 + 𝑠𝑡 − 𝑐𝑡] = 0 (17.2)

Here
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• 𝛽 is a discount factor in (0, 1).
• 𝑝0

𝑡 is a scaled Arrow-Debreu price at time 0 of history contingent goods at time 𝑡 + 𝑗.
• 𝑏𝑡 is a stochastic preference parameter.
• 𝑑𝑡 is an endowment process.
• 𝜏𝑡 is a flat tax rate on labor income.
• 𝑠𝑡 is a promised time-𝑡 coupon payment on debt issued by the government.

The scaled Arrow-Debreu price 𝑝0
𝑡 is related to the unscaled Arrow-Debreu price as follows.

If we let 𝜋0
𝑡 (𝑥𝑡) denote the probability (density) of a history 𝑥𝑡 = [𝑥𝑡, 𝑥𝑡−1, … , 𝑥0] of the state 𝑥𝑡, then the Arrow-Debreu

time 0 price of a claim on one unit of consumption at date 𝑡, history 𝑥𝑡 would be

𝛽𝑡𝑝0
𝑡

𝜋0
𝑡 (𝑥𝑡)

Thus, our scaled Arrow-Debreu price is the ordinary Arrow-Debreu price multiplied by the discount factor 𝛽𝑡 and divided
by an appropriate probability.
The budget constraint (17.2) requires that the present value of consumption be restricted to equal the present value of
endowments, labor income and coupon payments on bond holdings.

17.2.3 Government

The government imposes a linear tax on labor income, fully committing to a stochastic path of tax rates at time zero.
The government also issues state-contingent debt.
Given government tax and borrowing plans, we can construct a competitive equilibrium with distorting government taxes.
Among all such competitive equilibria, the Ramsey plan is the one that maximizes the welfare of the representative
consumer.

17.2.4 Exogenous Variables

Endowments, government expenditure, the preference shock process 𝑏𝑡, and promised coupon payments on initial gov-
ernment debt 𝑠𝑡 are all exogenous, and given by

• 𝑑𝑡 = 𝑆𝑑𝑥𝑡

• 𝑔𝑡 = 𝑆𝑔𝑥𝑡

• 𝑏𝑡 = 𝑆𝑏𝑥𝑡

• 𝑠𝑡 = 𝑆𝑠𝑥𝑡

The matrices 𝑆𝑑, 𝑆𝑔, 𝑆𝑏, 𝑆𝑠 are primitives and {𝑥𝑡} is an exogenous stochastic process taking values in ℝ𝑘.
We consider two specifications for {𝑥𝑡}.

1. Discrete case: {𝑥𝑡} is a discrete state Markov chain with transition matrix 𝑃 .
2. VAR case: {𝑥𝑡} obeys 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1 where {𝑤𝑡} is independent zero-mean Gaussian with identify

covariance matrix.
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17.2.5 Feasibility

The period-by-period feasibility restriction for this economy is

𝑐𝑡 + 𝑔𝑡 = 𝑑𝑡 + ℓ𝑡 (17.3)

A labor-consumption process {ℓ𝑡, 𝑐𝑡} is called feasible if (17.3) holds for all 𝑡.

17.2.6 Government Budget Constraint

Where 𝑝0
𝑡 is again a scaled Arrow-Debreu price, the time zero government budget constraint is

𝔼
∞

∑
𝑡=0

𝛽𝑡𝑝0
𝑡 (𝑠𝑡 + 𝑔𝑡 − 𝜏𝑡ℓ𝑡) = 0 (17.4)

17.2.7 Equilibrium

An equilibrium is a feasible allocation {ℓ𝑡, 𝑐𝑡}, a sequence of prices {𝑝0
𝑡 }, and a tax system {𝜏𝑡} such that

1. The allocation {ℓ𝑡, 𝑐𝑡} is optimal for the household given {𝑝0
𝑡 } and {𝜏𝑡}.

2. The government’s budget constraint (17.4) is satisfied.
The Ramsey problem is to choose the equilibrium {ℓ𝑡, 𝑐𝑡, 𝜏𝑡, 𝑝0

𝑡 } that maximizes the household’s welfare.
If {ℓ𝑡, 𝑐𝑡, 𝜏𝑡, 𝑝0

𝑡 } solves the Ramsey problem, then {𝜏𝑡} is called the Ramsey plan.
The solution procedure we adopt is

1. Use the first-order conditions from the household problem to pin down prices and allocations given {𝜏𝑡}.
2. Use these expressions to rewrite the government budget constraint (17.4) in terms of exogenous variables and

allocations.
3. Maximize the household’s objective function (17.1) subject to the constraint constructed in step 2 and the feasibility

constraint (17.3).
The solution to this maximization problem pins down all quantities of interest.

17.2.8 Solution

Step one is to obtain the first-conditions for the household’s problem, taking taxes and prices as given.
Letting 𝜇 be the Lagrange multiplier on (17.2), the first-order conditions are 𝑝0

𝑡 = (𝑐𝑡 −𝑏𝑡)/𝜇 and ℓ𝑡 = (𝑐𝑡 −𝑏𝑡)(1−𝜏𝑡).
Rearranging and normalizing at 𝜇 = 𝑏0 − 𝑐0, we can write these conditions as

𝑝0
𝑡 = 𝑏𝑡 − 𝑐𝑡

𝑏0 − 𝑐0
and 𝜏𝑡 = 1 − ℓ𝑡

𝑏𝑡 − 𝑐𝑡
(17.5)

Substituting (17.5) into the government’s budget constraint (17.4) yields

𝔼
∞

∑
𝑡=0

𝛽𝑡 [(𝑏𝑡 − 𝑐𝑡)(𝑠𝑡 + 𝑔𝑡 − ℓ𝑡) + ℓ2
𝑡 ] = 0 (17.6)

The Ramsey problem now amounts to maximizing (17.1) subject to (17.6) and (17.3).
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The associated Lagrangian is

ℒ = 𝔼
∞

∑
𝑡=0

𝛽𝑡 {−1
2 [(𝑐𝑡 − 𝑏𝑡)2 + ℓ2

𝑡 ] + 𝜆 [(𝑏𝑡 − 𝑐𝑡)(ℓ𝑡 − 𝑠𝑡 − 𝑔𝑡) − ℓ2
𝑡 ] + 𝜇𝑡[𝑑𝑡 + ℓ𝑡 − 𝑐𝑡 − 𝑔𝑡]} (17.7)

The first-order conditions associated with 𝑐𝑡 and ℓ𝑡 are

−(𝑐𝑡 − 𝑏𝑡) + 𝜆[−ℓ𝑡 + (𝑔𝑡 + 𝑠𝑡)] = 𝜇𝑡

and

ℓ𝑡 − 𝜆[(𝑏𝑡 − 𝑐𝑡) − 2ℓ𝑡] = 𝜇𝑡

Combining these last two equalities with (17.3) and working through the algebra, one can show that

ℓ𝑡 = ̄ℓ𝑡 − 𝜈𝑚𝑡 and 𝑐𝑡 = ̄𝑐𝑡 − 𝜈𝑚𝑡 (17.8)

where
• 𝜈 ∶= 𝜆/(1 + 2𝜆)
• ̄ℓ𝑡 ∶= (𝑏𝑡 − 𝑑𝑡 + 𝑔𝑡)/2
• ̄𝑐𝑡 ∶= (𝑏𝑡 + 𝑑𝑡 − 𝑔𝑡)/2
• 𝑚𝑡 ∶= (𝑏𝑡 − 𝑑𝑡 − 𝑠𝑡)/2

Apart from 𝜈, all of these quantities are expressed in terms of exogenous variables.
To solve for 𝜈, we can use the government’s budget constraint again.
The term inside the brackets in (17.6) is (𝑏𝑡 − 𝑐𝑡)(𝑠𝑡 + 𝑔𝑡) − (𝑏𝑡 − 𝑐𝑡)ℓ𝑡 + ℓ2

𝑡 .
Using (17.8), the definitions above and the fact that ̄ℓ = 𝑏 − ̄𝑐, this term can be rewritten as

(𝑏𝑡 − ̄𝑐𝑡)(𝑔𝑡 + 𝑠𝑡) + 2𝑚2
𝑡 (𝜈2 − 𝜈)

Reinserting into (17.6), we get

𝔼 {
∞

∑
𝑡=0

𝛽𝑡(𝑏𝑡 − ̄𝑐𝑡)(𝑔𝑡 + 𝑠𝑡)} + (𝜈2 − 𝜈)𝔼 {
∞

∑
𝑡=0

𝛽𝑡2𝑚2
𝑡 } = 0 (17.9)

Although it might not be clear yet, we are nearly there because:
• The two expectations terms in (17.9) can be solved for in terms of model primitives.
• This in turn allows us to solve for the Lagrange multiplier 𝜈.
• With 𝜈 in hand, we can go back and solve for the allocations via (17.8).
• Once we have the allocations, prices and the tax system can be derived from (17.5).

17.2.9 Computing the Quadratic Term

Let’s consider how to obtain the term 𝜈 in (17.9).
If we can compute the two expected geometric sums

𝑏0 ∶= 𝔼 {
∞

∑
𝑡=0

𝛽𝑡(𝑏𝑡 − ̄𝑐𝑡)(𝑔𝑡 + 𝑠𝑡)} and 𝑎0 ∶= 𝔼 {
∞

∑
𝑡=0

𝛽𝑡2𝑚2
𝑡 } (17.10)
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then the problem reduces to solving

𝑏0 + 𝑎0(𝜈2 − 𝜈) = 0

for 𝜈.
Provided that 4𝑏0 < 𝑎0, there is a unique solution 𝜈 ∈ (0, 1/2), and a unique corresponding 𝜆 > 0.
Let’s work out how to compute mathematical expectations in (17.10).
For the first one, the random variable (𝑏𝑡 − ̄𝑐𝑡)(𝑔𝑡 + 𝑠𝑡) inside the summation can be expressed as

1
2𝑥′

𝑡(𝑆𝑏 − 𝑆𝑑 + 𝑆𝑔)′(𝑆𝑔 + 𝑆𝑠)𝑥𝑡

For the second expectation in (17.10), the random variable 2𝑚2
𝑡 can be written as

1
2𝑥′

𝑡(𝑆𝑏 − 𝑆𝑑 − 𝑆𝑠)′(𝑆𝑏 − 𝑆𝑑 − 𝑆𝑠)𝑥𝑡

It follows that both objects of interest are special cases of the expression

𝑞(𝑥0) = 𝔼
∞

∑
𝑡=0

𝛽𝑡𝑥′
𝑡𝐻𝑥𝑡 (17.11)

where 𝐻 is a matrix conformable to 𝑥𝑡 and 𝑥′
𝑡 is the transpose of column vector 𝑥𝑡.

Suppose first that {𝑥𝑡} is the Gaussian VAR described above.
In this case, the formula for computing 𝑞(𝑥0) is known to be 𝑞(𝑥0) = 𝑥′

0𝑄𝑥0 + 𝑣, where
• 𝑄 is the solution to 𝑄 = 𝐻 + 𝛽𝐴′𝑄𝐴, and
• 𝑣 = trace (𝐶′𝑄𝐶)𝛽/(1 − 𝛽)

The first equation is known as a discrete Lyapunov equation and can be solved using this function.

17.2.10 Finite State Markov Case

Next, suppose that {𝑥𝑡} is the discrete Markov process described above.
Suppose further that each 𝑥𝑡 takes values in the state space {𝑥1, … , 𝑥𝑁} ⊂ ℝ𝑘.
Let ℎ∶ ℝ𝑘 → ℝ be a given function, and suppose that we wish to evaluate

𝑞(𝑥0) = 𝔼
∞

∑
𝑡=0

𝛽𝑡ℎ(𝑥𝑡) given 𝑥0 = 𝑥𝑗

For example, in the discussion above, ℎ(𝑥𝑡) = 𝑥′
𝑡𝐻𝑥𝑡.

It is legitimate to pass the expectation through the sum, leading to

𝑞(𝑥0) =
∞

∑
𝑡=0

𝛽𝑡(𝑃 𝑡ℎ)[𝑗] (17.12)

Here
• 𝑃 𝑡 is the 𝑡-th power of the transition matrix 𝑃 .
• ℎ is, with some abuse of notation, the vector (ℎ(𝑥1), … , ℎ(𝑥𝑁)).
• (𝑃 𝑡ℎ)[𝑗] indicates the 𝑗-th element of 𝑃 𝑡ℎ.

It can be shown that (17.12) is in fact equal to the 𝑗-th element of the vector (𝐼 − 𝛽𝑃)−1ℎ.
This last fact is applied in the calculations below.
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17.2.11 Other Variables

We are interested in tracking several other variables besides the ones described above.
To prepare the way for this, we define

𝑝𝑡
𝑡+𝑗 = 𝑏𝑡+𝑗 − 𝑐𝑡+𝑗

𝑏𝑡 − 𝑐𝑡

as the scaled Arrow-Debreu time 𝑡 price of a history contingent claim on one unit of consumption at time 𝑡 + 𝑗.
These are prices that would prevail at time 𝑡 if markets were reopened at time 𝑡.
These prices are constituents of the present value of government obligations outstanding at time 𝑡, which can be expressed
as

𝐵𝑡 ∶= 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑝𝑡
𝑡+𝑗(𝜏𝑡+𝑗ℓ𝑡+𝑗 − 𝑔𝑡+𝑗) (17.13)

Using our expression for prices and the Ramsey plan, we can also write 𝐵𝑡 as

𝐵𝑡 = 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗 (𝑏𝑡+𝑗 − 𝑐𝑡+𝑗)(ℓ𝑡+𝑗 − 𝑔𝑡+𝑗) − ℓ2
𝑡+𝑗

𝑏𝑡 − 𝑐𝑡

This version is more convenient for computation.
Using the equation

𝑝𝑡
𝑡+𝑗 = 𝑝𝑡

𝑡+1𝑝𝑡+1
𝑡+𝑗

it is possible to verify that (17.13) implies that

𝐵𝑡 = (𝜏𝑡ℓ𝑡 − 𝑔𝑡) + 𝐸𝑡
∞

∑
𝑗=1

𝑝𝑡
𝑡+𝑗(𝜏𝑡+𝑗ℓ𝑡+𝑗 − 𝑔𝑡+𝑗)

and

𝐵𝑡 = (𝜏𝑡ℓ𝑡 − 𝑔𝑡) + 𝛽𝐸𝑡𝑝𝑡
𝑡+1𝐵𝑡+1 (17.14)

Define

𝑅−1
𝑡 ∶= 𝔼𝑡𝛽𝑗𝑝𝑡

𝑡+1 (17.15)

𝑅𝑡 is the gross 1-period risk-free rate for loans between 𝑡 and 𝑡 + 1.

17.2.12 A Martingale

We now want to study the following two objects, namely,

𝜋𝑡+1 ∶= 𝐵𝑡+1 − 𝑅𝑡[𝐵𝑡 − (𝜏𝑡ℓ𝑡 − 𝑔𝑡)]

and the cumulation of 𝜋𝑡

Π𝑡 ∶=
𝑡

∑
𝑠=0

𝜋𝑡

The term 𝜋𝑡+1 is the difference between two quantities:
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• 𝐵𝑡+1, the value of government debt at the start of period 𝑡 + 1.
• 𝑅𝑡[𝐵𝑡 + 𝑔𝑡 − 𝜏𝑡], which is what the government would have owed at the beginning of period 𝑡 + 1 if it had simply
borrowed at the one-period risk-free rate rather than selling state-contingent securities.

Thus, 𝜋𝑡+1 is the excess payout on the actual portfolio of state-contingent government debt relative to an alternative
portfolio sufficient to finance 𝐵𝑡 + 𝑔𝑡 − 𝜏𝑡ℓ𝑡 and consisting entirely of risk-free one-period bonds.
Use expressions (17.14) and (17.15) to obtain

𝜋𝑡+1 = 𝐵𝑡+1 − 1
𝛽𝐸𝑡𝑝𝑡

𝑡+1
[𝛽𝐸𝑡𝑝𝑡

𝑡+1𝐵𝑡+1]

or

𝜋𝑡+1 = 𝐵𝑡+1 − ̃𝐸𝑡𝐵𝑡+1 (17.16)

where ̃𝐸𝑡 is the conditional mathematical expectation taken with respect to a one-step transition density that has been
formed by multiplying the original transition density with the likelihood ratio

𝑚𝑡
𝑡+1 = 𝑝𝑡

𝑡+1
𝐸𝑡𝑝𝑡

𝑡+1

It follows from equation (17.16) that

̃𝐸𝑡𝜋𝑡+1 = ̃𝐸𝑡𝐵𝑡+1 − ̃𝐸𝑡𝐵𝑡+1 = 0

which asserts that {𝜋𝑡+1} is a martingale difference sequence under the distorted probability measure, and that {Π𝑡} is a
martingale under the distorted probability measure.
In the tax-smoothing model of Robert Barro [Barro, 1979], government debt is a random walk.
In the current model, government debt {𝐵𝑡} is not a random walk, but the excess payoff {Π𝑡} on it is.

17.3 Implementation

The following code provides functions for
1. Solving for the Ramsey plan given a specification of the economy.
2. Simulating the dynamics of the major variables.

Description and clarifications are given below

# Set up a namedtuple to store data on the model economy
Economy = namedtuple('economy',

('β', # Discount factor
'Sg', # Govt spending selector matrix
'Sd', # Exogenous endowment selector matrix
'Sb', # Utility parameter selector matrix
'Ss', # Coupon payments selector matrix
'discrete', # Discrete or continuous -- boolean
'proc')) # Stochastic process parameters

# Set up a namedtuple to store return values for compute_paths()
Path = namedtuple('path',

('g', # Govt spending
'd', # Endowment

(continues on next page)
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(continued from previous page)

'b', # Utility shift parameter
's', # Coupon payment on existing debt
'c', # Consumption
'l', # Labor
'p', # Price
'τ', # Tax rate
'rvn', # Revenue
'B', # Govt debt
'R', # Risk-free gross return
'π', # One-period risk-free interest rate
'Π', # Cumulative rate of return, adjusted
'ξ')) # Adjustment factor for Π

def compute_paths(T, econ):
"""
Compute simulated time paths for exogenous and endogenous variables.

Parameters
===========
T: int

Length of the simulation

econ: a namedtuple of type 'Economy', containing
β - Discount factor
Sg - Govt spending selector matrix
Sd - Exogenous endowment selector matrix
Sb - Utility parameter selector matrix
Ss - Coupon payments selector matrix
discrete - Discrete exogenous process (True or False)
proc - Stochastic process parameters

Returns
========
path: a namedtuple of type 'Path', containing

g - Govt spending
d - Endowment
b - Utility shift parameter
s - Coupon payment on existing debt
c - Consumption
l - Labor
p - Price
τ - Tax rate
rvn - Revenue
B - Govt debt
R - Risk-free gross return
π - One-period risk-free interest rate
Π - Cumulative rate of return, adjusted
ξ - Adjustment factor for Π

The corresponding values are flat numpy ndarrays.

"""

# Simplify names
β, Sg, Sd, Sb, Ss = econ.β, econ.Sg, econ.Sd, econ.Sb, econ.Ss

(continues on next page)
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if econ.discrete:
P, x_vals = econ.proc

else:
A, C = econ.proc

# Simulate the exogenous process x
if econ.discrete:

state = mc_sample_path(P, init=0, sample_size=T)
x = x_vals[:, state]

else:
# Generate an initial condition x0 satisfying x0 = A x0
nx, nx = A.shape
x0 = nullspace((eye(nx) - A))
x0 = -x0 if (x0[nx-1] < 0) else x0
x0 = x0 / x0[nx-1]

# Generate a time series x of length T starting from x0
nx, nw = C.shape
x = zeros((nx, T))
w = randn(nw, T)
x[:, 0] = x0.T
for t in range(1, T):

x[:, t] = A @ x[:, t-1] + C @ w[:, t]

# Compute exogenous variable sequences
g, d, b, s = ((S @ x).flatten() for S in (Sg, Sd, Sb, Ss))

# Solve for Lagrange multiplier in the govt budget constraint
# In fact we solve for ν = lambda / (1 + 2*lambda). Here ν is the
# solution to a quadratic equation a(ν**2 - ν) + b = 0 where
# a and b are expected discounted sums of quadratic forms of the state.
Sm = Sb - Sd - Ss
# Compute a and b
if econ.discrete:

ns = P.shape[0]
F = scipy.linalg.inv(eye(ns) - β * P)
a0 = 0.5 * (F @ (x_vals.T @ Sm.T)**2)[0]
H = ((Sb - Sd + Sg) @ x_vals) * ((Sg - Ss) @ x_vals)
b0 = 0.5 * (F @ H.T)[0]
a0, b0 = float(a0), float(b0)

else:
H = Sm.T @ Sm
a0 = 0.5 * var_quadratic_sum(A, C, H, β, x0)
H = (Sb - Sd + Sg).T @ (Sg + Ss)
b0 = 0.5 * var_quadratic_sum(A, C, H, β, x0)

# Test that ν has a real solution before assigning
warning_msg = """
Hint: you probably set government spending too {}. Elect a {}
Congress and start over.
"""
disc = a0**2 - 4 * a0 * b0
if disc >= 0:

ν = 0.5 * (a0 - sqrt(disc)) / a0
else:

(continues on next page)
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print("There is no Ramsey equilibrium for these parameters.")
print(warning_msg.format('high', 'Republican'))
sys.exit(0)

# Test that the Lagrange multiplier has the right sign
if ν * (0.5 - ν) < 0:

print("Negative multiplier on the government budget constraint.")
print(warning_msg.format('low', 'Democratic'))
sys.exit(0)

# Solve for the allocation given ν and x
Sc = 0.5 * (Sb + Sd - Sg - ν * Sm)
Sl = 0.5 * (Sb - Sd + Sg - ν * Sm)
c = (Sc @ x).flatten()
l = (Sl @ x).flatten()
p = ((Sb - Sc) @ x).flatten() # Price without normalization
τ = 1 - l / (b - c)
rvn = l * τ

# Compute remaining variables
if econ.discrete:

H = ((Sb - Sc) @ x_vals) * ((Sl - Sg) @ x_vals) - (Sl @ x_vals)**2
temp = (F @ H.T).flatten()
B = temp[state] / p
H = (P[state, :] @ x_vals.T @ (Sb - Sc).T).flatten()
R = p / (β * H)
temp = ((P[state, :] @ x_vals.T @ (Sb - Sc).T)).flatten()
ξ = p[1:] / temp[:T-1]

else:
H = Sl.T @ Sl - (Sb - Sc).T @ (Sl - Sg)
L = np.empty(T)
for t in range(T):

L[t] = var_quadratic_sum(A, C, H, β, x[:, t])
B = L / p
Rinv = (β * ((Sb - Sc) @ A @ x)).flatten() / p
R = 1 / Rinv
AF1 = (Sb - Sc) @ x[:, 1:]
AF2 = (Sb - Sc) @ A @ x[:, :T-1]
ξ = AF1 / AF2
ξ = ξ.flatten()

π = B[1:] - R[:T-1] * B[:T-1] - rvn[:T-1] + g[:T-1]
Π = cumsum(π * ξ)

# Prepare return values
path = Path(g=g, d=d, b=b, s=s, c=c, l=l, p=p,

τ=τ, rvn=rvn, B=B, R=R, π=π, Π=Π, ξ=ξ)

return path

def gen_fig_1(path):
"""
The parameter is the path namedtuple returned by compute_paths(). See
the docstring of that function for details.
"""

(continues on next page)
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T = len(path.c)

# Prepare axes
num_rows, num_cols = 2, 2
fig, axes = plt.subplots(num_rows, num_cols, figsize=(14, 10))
plt.subplots_adjust(hspace=0.4)
for i in range(num_rows):

for j in range(num_cols):
axes[i, j].grid()
axes[i, j].set_xlabel('Time')

bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

# Plot consumption, govt expenditure and revenue
ax = axes[0, 0]
ax.plot(path.rvn, label=r'$\tau_t \ell_t$', **p_args)
ax.plot(path.g, label='$g_t$', **p_args)
ax.plot(path.c, label='$c_t$', **p_args)
ax.legend(ncol=3, **legend_args)

# Plot govt expenditure and debt
ax = axes[0, 1]
ax.plot(list(range(1, T+1)), path.rvn, label=r'$\tau_t \ell_t$', **p_args)
ax.plot(list(range(1, T+1)), path.g, label='$g_t$', **p_args)
ax.plot(list(range(1, T)), path.B[1:T], label='$B_{t+1}$', **p_args)
ax.legend(ncol=3, **legend_args)

# Plot risk-free return
ax = axes[1, 0]
ax.plot(list(range(1, T+1)), path.R - 1, label='$R_t - 1$', **p_args)
ax.legend(ncol=1, **legend_args)

# Plot revenue, expenditure and risk free rate
ax = axes[1, 1]
ax.plot(list(range(1, T+1)), path.rvn, label=r'$\tau_t \ell_t$', **p_args)
ax.plot(list(range(1, T+1)), path.g, label='$g_t$', **p_args)
axes[1, 1].plot(list(range(1, T)), path.π, label=r'$\pi_{t+1}$', **p_args)
ax.legend(ncol=3, **legend_args)

plt.show()

def gen_fig_2(path):
"""
The parameter is the path namedtuple returned by compute_paths(). See
the docstring of that function for details.
"""

T = len(path.c)

# Prepare axes
num_rows, num_cols = 2, 1
fig, axes = plt.subplots(num_rows, num_cols, figsize=(10, 10))
plt.subplots_adjust(hspace=0.5)

(continues on next page)
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bbox = (0., 1.02, 1., .102)
bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

# Plot adjustment factor
ax = axes[0]
ax.plot(list(range(2, T+1)), path.ξ, label=r'$\xi_t$', **p_args)
ax.grid()
ax.set_xlabel('Time')
ax.legend(ncol=1, **legend_args)

# Plot adjusted cumulative return
ax = axes[1]
ax.plot(list(range(2, T+1)), path.Π, label=r'$\Pi_t$', **p_args)
ax.grid()
ax.set_xlabel('Time')
ax.legend(ncol=1, **legend_args)

plt.show()

17.3.1 Comments on the Code

The function var_quadratic_sum imported from quadsums is for computing the value of (17.11) when the ex-
ogenous process {𝑥𝑡} is of the VAR type described above.
Below the definition of the function, you will see definitions of two namedtuple objects, Economy and Path.
The first is used to collect all the parameters and primitives of a given LQ economy, while the second collects output of
the computations.
In Python, a namedtuple is a popular data type from the collectionsmodule of the standard library that replicates
the functionality of a tuple, but also allows you to assign a name to each tuple element.
These elements can then be references via dotted attribute notation — see for example the use of path in the functions
gen_fig_1() and gen_fig_2().
The benefits of using namedtuples:

• Keeps content organized by meaning.
• Helps reduce the number of global variables.

Other than that, our code is long but relatively straightforward.

17.4 Examples

Let’s look at two examples of usage.

17.4. Examples 321



Dynamic Linear Economies

17.4.1 The Continuous Case

Our first example adopts the VAR specification described above.
Regarding the primitives, we set

• 𝛽 = 1/1.05
• 𝑏𝑡 = 2.135 and 𝑠𝑡 = 𝑑𝑡 = 0 for all 𝑡

Government spending evolves according to

𝑔𝑡+1 − 𝜇𝑔 = 𝜌(𝑔𝑡 − 𝜇𝑔) + 𝐶𝑔𝑤𝑔,𝑡+1

with 𝜌 = 0.7, 𝜇𝑔 = 0.35 and 𝐶𝑔 = 𝜇𝑔√1 − 𝜌2/10.
Here’s the code

# == Parameters == #
β = 1 / 1.05
ρ, mg = .7, .35
A = eye(2)
A[0, :] = ρ, mg * (1-ρ)
C = np.zeros((2, 1))
C[0, 0] = np.sqrt(1 - ρ**2) * mg / 10
Sg = np.array((1, 0)).reshape(1, 2)
Sd = np.array((0, 0)).reshape(1, 2)
Sb = np.array((0, 2.135)).reshape(1, 2)
Ss = np.array((0, 0)).reshape(1, 2)

economy = Economy(β=β, Sg=Sg, Sd=Sd, Sb=Sb, Ss=Ss,
discrete=False, proc=(A, C))

T = 50
path = compute_paths(T, economy)
gen_fig_1(path)
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The legends on the figures indicate the variables being tracked.
Most obvious from the figure is tax smoothing in the sense that tax revenue is much less variable than government expen-
diture.

gen_fig_2(path)
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See the original manuscript for comments and interpretation.

17.4.2 The Discrete Case

Our second example adopts a discrete Markov specification for the exogenous process

# == Parameters == #
β = 1 / 1.05
P = np.array([[0.8, 0.2, 0.0],

[0.0, 0.5, 0.5],
[0.0, 0.0, 1.0]])

# Possible states of the world

(continues on next page)
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(continued from previous page)

# Each column is a state of the world. The rows are [g d b s 1]
x_vals = np.array([[0.5, 0.5, 0.25],

[0.0, 0.0, 0.0],
[2.2, 2.2, 2.2],
[0.0, 0.0, 0.0],
[1.0, 1.0, 1.0]])

Sg = np.array((1, 0, 0, 0, 0)).reshape(1, 5)
Sd = np.array((0, 1, 0, 0, 0)).reshape(1, 5)
Sb = np.array((0, 0, 1, 0, 0)).reshape(1, 5)
Ss = np.array((0, 0, 0, 1, 0)).reshape(1, 5)

economy = Economy(β=β, Sg=Sg, Sd=Sd, Sb=Sb, Ss=Ss,
discrete=True, proc=(P, x_vals))

T = 15
path = compute_paths(T, economy)
gen_fig_1(path)

/tmp/ipykernel_6535/2748685684.py:111: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
a0, b0 = float(a0), float(b0)
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The call gen_fig_2(path) generates

gen_fig_2(path)

See the original manuscript for comments and interpretation.

326 Chapter 17. Optimal Taxation in an LQ Economy

https://lectures.quantecon.org/_downloads/firenze.pdf


Dynamic Linear Economies

17.5 Exercises

Exercise 17.5.1
Modify the VAR example given above, setting

𝑔𝑡+1 − 𝜇𝑔 = 𝜌(𝑔𝑡−3 − 𝜇𝑔) + 𝐶𝑔𝑤𝑔,𝑡+1

with 𝜌 = 0.95 and 𝐶𝑔 = 0.7√1 − 𝜌2.
Produce the corresponding figures.

Solution to Exercise 17.5.1

# == Parameters == #
β = 1 / 1.05
ρ, mg = .95, .35
A = np.array([[0, 0, 0, ρ, mg*(1-ρ)],

[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 1]])

C = np.zeros((5, 1))
C[0, 0] = np.sqrt(1 - ρ**2) * mg / 8
Sg = np.array((1, 0, 0, 0, 0)).reshape(1, 5)
Sd = np.array((0, 0, 0, 0, 0)).reshape(1, 5)
# Chosen st. (Sc + Sg) * x0 = 1
Sb = np.array((0, 0, 0, 0, 2.135)).reshape(1, 5)
Ss = np.array((0, 0, 0, 0, 0)).reshape(1, 5)

economy = Economy(β=β, Sg=Sg, Sd=Sd, Sb=Sb,
Ss=Ss, discrete=False, proc=(A, C))

T = 50
path = compute_paths(T, economy)

gen_fig_1(path)
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gen_fig_2(path)
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EIGHTEEN

LINEAR STATE SPACE MODELS

Contents

• Linear State Space Models
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– The Linear State Space Model

– Distributions and Moments

– Stationarity and Ergodicity

– Noisy Observations

– Prediction

– Code

– Exercises

“Wemay regard the present state of the universe as the effect of its past and the cause of its future” –Marquis
de Laplace

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

18.1 Overview

This lecture introduces the linear state space dynamic system.
The linear state space system is a generalization of the scalar AR(1) process we studied before.
This model is a workhorse that carries a powerful theory of prediction.
Its many applications include:

• representing dynamics of higher-order linear systems
• predicting the position of a system 𝑗 steps into the future
• predicting a geometric sum of future values of a variable like

– non-financial income
– dividends on a stock
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– the money supply
– a government deficit or surplus, etc.

• key ingredient of useful models
– Friedman’s permanent income model of consumption smoothing.
– Barro’s model of smoothing total tax collections.
– Rational expectations version of Cagan’s model of hyperinflation.
– Sargent and Wallace’s “unpleasant monetarist arithmetic,” etc.

Let’s start with some imports:

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import numpy as np
from quantecon import LinearStateSpace
from scipy.stats import norm
import random

18.2 The Linear State Space Model

The objects in play are:
• An 𝑛 × 1 vector 𝑥𝑡 denoting the state at time 𝑡 = 0, 1, 2, ….
• An IID sequence of 𝑚 × 1 random vectors 𝑤𝑡 ∼ 𝑁(0, 𝐼).
• A 𝑘 × 1 vector 𝑦𝑡 of observations at time 𝑡 = 0, 1, 2, ….
• An 𝑛 × 𝑛 matrix 𝐴 called the transition matrix.
• An 𝑛 × 𝑚 matrix 𝐶 called the volatility matrix.
• A 𝑘 × 𝑛 matrix 𝐺 sometimes called the output matrix.

Here is the linear state-space system

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝐺𝑥𝑡
𝑥0 ∼ 𝑁(𝜇0, Σ0)

18.2.1 Primitives

The primitives of the model are
1. the matrices 𝐴, 𝐶, 𝐺
2. shock distribution, which we have specialized to 𝑁(0, 𝐼)
3. the distribution of the initial condition 𝑥0, which we have set to 𝑁(𝜇0, Σ0)

Given 𝐴, 𝐶, 𝐺 and draws of 𝑥0 and 𝑤1, 𝑤2, …, the model (18.1) pins down the values of the sequences {𝑥𝑡} and {𝑦𝑡}.
Even without these draws, the primitives 1–3 pin down the probability distributions of {𝑥𝑡} and {𝑦𝑡}.
Later we’ll see how to compute these distributions and their moments.
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Martingale Difference Shocks

We’ve made the common assumption that the shocks are independent standardized normal vectors.
But some of what we say will be valid under the assumption that {𝑤𝑡+1} is a martingale difference sequence.
A martingale difference sequence is a sequence that is zero mean when conditioned on past information.
In the present case, since {𝑥𝑡} is our state sequence, this means that it satisfies

𝔼[𝑤𝑡+1|𝑥𝑡, 𝑥𝑡−1, …] = 0

This is a weaker condition than that {𝑤𝑡} is IID with 𝑤𝑡+1 ∼ 𝑁(0, 𝐼).

18.2.2 Examples

By appropriate choice of the primitives, a variety of dynamics can be represented in terms of the linear state space model.
The following examples help to highlight this point.
They also illustrate the wise dictum finding the state is an art.

Second-order Difference Equation

Let {𝑦𝑡} be a deterministic sequence that satisfies

𝑦𝑡+1 = 𝜙0 + 𝜙1𝑦𝑡 + 𝜙2𝑦𝑡−1 s.t. 𝑦0, 𝑦−1 given (18.1)

To map (18.1) into our state space system (18.1), we set

𝑥𝑡 = ⎡⎢
⎣

1
𝑦𝑡

𝑦𝑡−1

⎤⎥
⎦

𝐴 = ⎡⎢
⎣

1 0 0
𝜙0 𝜙1 𝜙2
0 1 0

⎤⎥
⎦

𝐶 = ⎡⎢
⎣

0
0
0
⎤⎥
⎦

𝐺 = [0 1 0]

You can confirm that under these definitions, (18.1) and (18.1) agree.
The next figure shows the dynamics of this process when 𝜙0 = 1.1, 𝜙1 = 0.8, 𝜙2 = −0.8, 𝑦0 = 𝑦−1 = 1.

def plot_lss(A,
C,
G,
n=3,
ts_length=50):

ar = LinearStateSpace(A, C, G, mu_0=np.ones(n))
x, y = ar.simulate(ts_length)

fig, ax = plt.subplots()
y = y.flatten()
ax.plot(y, 'b-', lw=2, alpha=0.7)
ax.grid()
ax.set_xlabel('time', fontsize=12)
ax.set_ylabel('$y_t$', fontsize=12)
plt.show()
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ϕ_0, ϕ_1, ϕ_2 = 1.1, 0.8, -0.8

A = [[1, 0, 0 ],
[ϕ_0, ϕ_1, ϕ_2],
[0, 1, 0 ]]

C = np.zeros((3, 1))
G = [0, 1, 0]

plot_lss(A, C, G)

Later you’ll be asked to recreate this figure.

Univariate Autoregressive Processes

We can use (18.1) to represent the model

𝑦𝑡+1 = 𝜙1𝑦𝑡 + 𝜙2𝑦𝑡−1 + 𝜙3𝑦𝑡−2 + 𝜙4𝑦𝑡−3 + 𝜎𝑤𝑡+1 (18.2)

where {𝑤𝑡} is IID and standard normal.

To put this in the linear state space format we take 𝑥𝑡 = [𝑦𝑡 𝑦𝑡−1 𝑦𝑡−2 𝑦𝑡−3]′ and

𝐴 =
⎡
⎢⎢
⎣

𝜙1 𝜙2 𝜙3 𝜙4
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥
⎦

𝐶 =
⎡
⎢⎢
⎣

𝜎
0
0
0

⎤
⎥⎥
⎦

𝐺 = [1 0 0 0]

The matrix 𝐴 has the form of the companion matrix to the vector [𝜙1 𝜙2 𝜙3 𝜙4].
The next figure shows the dynamics of this process when

𝜙1 = 0.5, 𝜙2 = −0.2, 𝜙3 = 0, 𝜙4 = 0.5, 𝜎 = 0.2, 𝑦0 = 𝑦−1 = 𝑦−2 = 𝑦−3 = 1

336 Chapter 18. Linear State Space Models



Dynamic Linear Economies

ϕ_1, ϕ_2, ϕ_3, ϕ_4 = 0.5, -0.2, 0, 0.5
σ = 0.2

A_1 = [[ϕ_1, ϕ_2, ϕ_3, ϕ_4],
[1, 0, 0, 0 ],
[0, 1, 0, 0 ],
[0, 0, 1, 0 ]]

C_1 = [[σ],
[0],
[0],
[0]]

G_1 = [1, 0, 0, 0]

plot_lss(A_1, C_1, G_1, n=4, ts_length=200)

Vector Autoregressions

Now suppose that
• 𝑦𝑡 is a 𝑘 × 1 vector
• 𝜙𝑗 is a 𝑘 × 𝑘 matrix and
• 𝑤𝑡 is 𝑘 × 1

Then (18.2) is termed a vector autoregression.
To map this into (18.1), we set

𝑥𝑡 =
⎡
⎢⎢
⎣

𝑦𝑡
𝑦𝑡−1
𝑦𝑡−2
𝑦𝑡−3

⎤
⎥⎥
⎦

𝐴 =
⎡
⎢⎢
⎣

𝜙1 𝜙2 𝜙3 𝜙4
𝐼 0 0 0
0 𝐼 0 0
0 0 𝐼 0

⎤
⎥⎥
⎦

𝐶 =
⎡
⎢⎢
⎣

𝜎
0
0
0

⎤
⎥⎥
⎦

𝐺 = [𝐼 0 0 0]

where 𝐼 is the 𝑘 × 𝑘 identity matrix and 𝜎 is a 𝑘 × 𝑘 matrix.
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Seasonals

We can use (18.1) to represent
1. the deterministic seasonal 𝑦𝑡 = 𝑦𝑡−4

2. the indeterministic seasonal 𝑦𝑡 = 𝜙4𝑦𝑡−4 + 𝑤𝑡

In fact, both are special cases of (18.2).
With the deterministic seasonal, the transition matrix becomes

𝐴 =
⎡
⎢⎢
⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥
⎦

It is easy to check that 𝐴4 = 𝐼 , which implies that 𝑥𝑡 is strictly periodic with period 4:1

𝑥𝑡+4 = 𝑥𝑡

Such an 𝑥𝑡 process can be used to model deterministic seasonals in quarterly time series.
The indeterministic seasonal produces recurrent, but aperiodic, seasonal fluctuations.

Time Trends

The model 𝑦𝑡 = 𝑎𝑡 + 𝑏 is known as a linear time trend.
We can represent this model in the linear state space form by taking

𝐴 = [1 1
0 1] 𝐶 = [0

0] 𝐺 = [𝑎 𝑏] (18.3)

and starting at initial condition 𝑥0 = [0 1]′.
In fact, it’s possible to use the state-space system to represent polynomial trends of any order.
For instance, we can represent the model 𝑦𝑡 = 𝑎𝑡2 + 𝑏𝑡 + 𝑐 in the linear state space form by taking

𝐴 = ⎡⎢
⎣

1 1 0
0 1 1
0 0 1

⎤⎥
⎦

𝐶 = ⎡⎢
⎣

0
0
0
⎤⎥
⎦

𝐺 = [2𝑎 𝑎 + 𝑏 𝑐]

and starting at initial condition 𝑥0 = [0 0 1]′.
It follows that

𝐴𝑡 = ⎡⎢
⎣

1 𝑡 𝑡(𝑡 − 1)/2
0 1 𝑡
0 0 1

⎤⎥
⎦

Then 𝑥′
𝑡 = [𝑡(𝑡 − 1)/2 𝑡 1]. You can now confirm that 𝑦𝑡 = 𝐺𝑥𝑡 has the correct form.

1 The eigenvalues of 𝐴 are (1, −1, 𝑖, −𝑖).
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18.2.3 Moving Average Representations

A nonrecursive expression for 𝑥𝑡 as a function of 𝑥0, 𝑤1, 𝑤2, … , 𝑤𝑡 can be found by using (18.1) repeatedly to obtain

𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝐶𝑤𝑡
= 𝐴2𝑥𝑡−2 + 𝐴𝐶𝑤𝑡−1 + 𝐶𝑤𝑡

⋮

=
𝑡−1
∑
𝑗=0

𝐴𝑗𝐶𝑤𝑡−𝑗 + 𝐴𝑡𝑥0

Representation (18.4) is a moving average representation.
It expresses {𝑥𝑡} as a linear function of

1. current and past values of the process {𝑤𝑡} and
2. the initial condition 𝑥0

As an example of a moving average representation, let the model be

𝐴 = [1 1
0 1] 𝐶 = [1

0]

You will be able to show that 𝐴𝑡 = [1 𝑡
0 1] and 𝐴𝑗𝐶 = [1 0]′.

Substituting into the moving average representation (18.4), we obtain

𝑥1𝑡 =
𝑡−1
∑
𝑗=0

𝑤𝑡−𝑗 + [1 𝑡] 𝑥0

where 𝑥1𝑡 is the first entry of 𝑥𝑡.
The first term on the right is a cumulated sum of martingale differences and is therefore a martingale.
The second term is a translated linear function of time.
For this reason, 𝑥1𝑡 is called a martingale with drift.

18.3 Distributions and Moments

18.3.1 Unconditional Moments

Using (18.1), it’s easy to obtain expressions for the (unconditional) means of 𝑥𝑡 and 𝑦𝑡.
We’ll explain what unconditional and conditional mean soon.
Letting 𝜇𝑡 ∶= 𝔼[𝑥𝑡] and using linearity of expectations, we find that

𝜇𝑡+1 = 𝐴𝜇𝑡 with 𝜇0 given (18.4)

Here 𝜇0 is a primitive given in (18.1).
The variance-covariance matrix of 𝑥𝑡 is Σ𝑡 ∶= 𝔼[(𝑥𝑡 − 𝜇𝑡)(𝑥𝑡 − 𝜇𝑡)′].
Using 𝑥𝑡+1 − 𝜇𝑡+1 = 𝐴(𝑥𝑡 − 𝜇𝑡) + 𝐶𝑤𝑡+1, we can determine this matrix recursively via

Σ𝑡+1 = 𝐴Σ𝑡𝐴′ + 𝐶𝐶′ with Σ0 given (18.5)
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As with 𝜇0, the matrix Σ0 is a primitive given in (18.1).
As a matter of terminology, we will sometimes call

• 𝜇𝑡 the unconditional mean of 𝑥𝑡

• Σ𝑡 the unconditional variance-covariance matrix of 𝑥𝑡

This is to distinguish 𝜇𝑡 and Σ𝑡 from related objects that use conditioning information, to be defined below.
However, you should be aware that these “unconditional” moments do depend on the initial distribution 𝑁(𝜇0, Σ0).

Moments of the Observables

Using linearity of expectations again we have

𝔼[𝑦𝑡] = 𝔼[𝐺𝑥𝑡] = 𝐺𝜇𝑡 (18.6)

The variance-covariance matrix of 𝑦𝑡 is easily shown to be

Var[𝑦𝑡] = Var[𝐺𝑥𝑡] = 𝐺Σ𝑡𝐺′ (18.7)

18.3.2 Distributions

In general, knowing the mean and variance-covariance matrix of a random vector is not quite as good as knowing the full
distribution.
However, there are some situations where these moments alone tell us all we need to know.
These are situations in which themean vector and covariancematrix are all of the parameters that pin down the population
distribution.
One such situation is when the vector in question is Gaussian (i.e., normally distributed).
This is the case here, given

1. our Gaussian assumptions on the primitives
2. the fact that normality is preserved under linear operations

In fact, it’s well-known that

𝑢 ∼ 𝑁(𝑢̄, 𝑆) and 𝑣 = 𝑎 + 𝐵𝑢 ⟹ 𝑣 ∼ 𝑁(𝑎 + 𝐵𝑢̄, 𝐵𝑆𝐵′) (18.8)

In particular, given our Gaussian assumptions on the primitives and the linearity of (18.1) we can see immediately that
both 𝑥𝑡 and 𝑦𝑡 are Gaussian for all 𝑡 ≥ 02.
Since 𝑥𝑡 is Gaussian, to find the distribution, all we need to do is find its mean and variance-covariance matrix.
But in fact we’ve already done this, in (18.4) and (18.5).
Letting 𝜇𝑡 and Σ𝑡 be as defined by these equations, we have

𝑥𝑡 ∼ 𝑁(𝜇𝑡, Σ𝑡) (18.9)

By similar reasoning combined with (18.6) and (18.7),

𝑦𝑡 ∼ 𝑁(𝐺𝜇𝑡, 𝐺Σ𝑡𝐺′) (18.10)
2 The correct way to argue this is by induction. Suppose that 𝑥𝑡 is Gaussian. Then (18.1) and (18.8) imply that 𝑥𝑡+1 is Gaussian. Since 𝑥0 is

assumed to be Gaussian, it follows that every 𝑥𝑡 is Gaussian. Evidently, this implies that each 𝑦𝑡 is Gaussian.
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18.3.3 Ensemble Interpretations

How should we interpret the distributions defined by (18.9)–(18.10)?
Intuitively, the probabilities in a distribution correspond to relative frequencies in a large population drawn from that
distribution.
Let’s apply this idea to our setting, focusing on the distribution of 𝑦𝑇 for fixed 𝑇 .
We can generate independent draws of 𝑦𝑇 by repeatedly simulating the evolution of the system up to time 𝑇 , using an
independent set of shocks each time.
The next figure shows 20 simulations, producing 20 time series for {𝑦𝑡}, and hence 20 draws of 𝑦𝑇 .
The system in question is the univariate autoregressive model (18.2).
The values of 𝑦𝑇 are represented by black dots in the left-hand figure

def cross_section_plot(A,
C,
G,
T=20, # Set the time
ymin=-0.8,
ymax=1.25,
sample_size = 20, # 20 observations/simulations
n=4): # The number of dimensions for the initial x0

ar = LinearStateSpace(A, C, G, mu_0=np.ones(n))

fig, axes = plt.subplots(1, 2, figsize=(16, 5))

for ax in axes:
ax.grid(alpha=0.4)
ax.set_ylim(ymin, ymax)

ax = axes[0]
ax.set_ylim(ymin, ymax)
ax.set_ylabel('$y_t$', fontsize=12)
ax.set_xlabel('time', fontsize=12)
ax.vlines((T,), -1.5, 1.5)

ax.set_xticks((T,))
ax.set_xticklabels(('$T$',))

sample = []
for i in range(sample_size):

rcolor = random.choice(('c', 'g', 'b', 'k'))
x, y = ar.simulate(ts_length=T+15)
y = y.flatten()
ax.plot(y, color=rcolor, lw=1, alpha=0.5)
ax.plot((T,), (y[T],), 'ko', alpha=0.5)
sample.append(y[T])

y = y.flatten()
axes[1].set_ylim(ymin, ymax)
axes[1].set_ylabel('$y_t$', fontsize=12)
axes[1].set_xlabel('relative frequency', fontsize=12)
axes[1].hist(sample, bins=16, density=True, orientation='horizontal', alpha=0.5)
plt.show()
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ϕ_1, ϕ_2, ϕ_3, ϕ_4 = 0.5, -0.2, 0, 0.5
σ = 0.1

A_2 = [[ϕ_1, ϕ_2, ϕ_3, ϕ_4],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0]]

C_2 = [[σ], [0], [0], [0]]

G_2 = [1, 0, 0, 0]

cross_section_plot(A_2, C_2, G_2)

In the right-hand figure, these values are converted into a rotated histogram that shows relative frequencies from our
sample of 20 𝑦𝑇 ’s.
Here is another figure, this time with 100 observations

t = 100
cross_section_plot(A_2, C_2, G_2, T=t)

Let’s now try with 500,000 observations, showing only the histogram (without rotation)

T = 100
ymin=-0.8
ymax=1.25

(continues on next page)
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(continued from previous page)

sample_size = 500_000

ar = LinearStateSpace(A_2, C_2, G_2, mu_0=np.ones(4))
fig, ax = plt.subplots()
x, y = ar.simulate(sample_size)
mu_x, mu_y, Sigma_x, Sigma_y, Sigma_yx = ar.stationary_distributions()
f_y = norm(loc=float(mu_y), scale=float(np.sqrt(Sigma_y)))
y = y.flatten()
ygrid = np.linspace(ymin, ymax, 150)

ax.hist(y, bins=50, density=True, alpha=0.4)
ax.plot(ygrid, f_y.pdf(ygrid), 'k-', lw=2, alpha=0.8, label=r'true density')
ax.set_xlim(ymin, ymax)
ax.set_xlabel('$y_t$', fontsize=12)
ax.set_ylabel('relative frequency', fontsize=12)
ax.legend(fontsize=12)
plt.show()

/tmp/ipykernel_6430/1034809053.py:10: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
f_y = norm(loc=float(mu_y), scale=float(np.sqrt(Sigma_y)))

The black line is the population density of 𝑦𝑇 calculated from (18.10).
The histogram and population distribution are close, as expected.
By looking at the figures and experimenting with parameters, you will gain a feel for how the population distribution
depends on the model primitives listed above, as intermediated by the distribution’s parameters.
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Ensemble Means

In the preceding figure, we approximated the population distribution of 𝑦𝑇 by
1. generating 𝐼 sample paths (i.e., time series) where 𝐼 is a large number
2. recording each observation 𝑦𝑖

𝑇

3. histogramming this sample
Just as the histogram approximates the population distribution, the ensemble or cross-sectional average

̄𝑦𝑇 ∶= 1
𝐼

𝐼
∑
𝑖=1

𝑦𝑖
𝑇

approximates the expectation 𝔼[𝑦𝑇 ] = 𝐺𝜇𝑇 (as implied by the law of large numbers).
Here’s a simulation comparing the ensemble averages and population means at time points 𝑡 = 0, … , 50.
The parameters are the same as for the preceding figures, and the sample size is relatively small (𝐼 = 20).

I = 20
T = 50
ymin = -0.5
ymax = 1.15

ar = LinearStateSpace(A_2, C_2, G_2, mu_0=np.ones(4))

fig, ax = plt.subplots()

ensemble_mean = np.zeros(T)
for i in range(I):

x, y = ar.simulate(ts_length=T)
y = y.flatten()
ax.plot(y, 'c-', lw=0.8, alpha=0.5)
ensemble_mean = ensemble_mean + y

ensemble_mean = ensemble_mean / I
ax.plot(ensemble_mean, color='b', lw=2, alpha=0.8, label='$\\bar y_t$')
m = ar.moment_sequence()

population_means = []
for t in range(T):

μ_x, μ_y, Σ_x, Σ_y = next(m)
population_means.append(float(μ_y))

ax.plot(population_means, color='g', lw=2, alpha=0.8, label='$G\mu_t$')
ax.set_ylim(ymin, ymax)
ax.set_xlabel('time', fontsize=12)
ax.set_ylabel('$y_t$', fontsize=12)
ax.legend(ncol=2)
plt.show()

/tmp/ipykernel_6430/3206934063.py:24: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
population_means.append(float(μ_y))
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The ensemble mean for 𝑥𝑡 is

̄𝑥𝑇 ∶= 1
𝐼

𝐼
∑
𝑖=1

𝑥𝑖
𝑇 → 𝜇𝑇 (𝐼 → ∞)

The limit 𝜇𝑇 is a “long-run average”.
(By long-run average we mean the average for an infinite (𝐼 = ∞) number of sample 𝑥𝑇 ’s)
Another application of the law of large numbers assures us that

1
𝐼

𝐼
∑
𝑖=1

(𝑥𝑖
𝑇 − ̄𝑥𝑇 )(𝑥𝑖

𝑇 − ̄𝑥𝑇 )′ → Σ𝑇 (𝐼 → ∞)

18.3.4 Joint Distributions

In the preceding discussion, we looked at the distributions of 𝑥𝑡 and 𝑦𝑡 in isolation.
This gives us useful information but doesn’t allow us to answer questions like

• what’s the probability that 𝑥𝑡 ≥ 0 for all 𝑡?
• what’s the probability that the process {𝑦𝑡} exceeds some value 𝑎 before falling below 𝑏?
• etc., etc.

Such questions concern the joint distributions of these sequences.
To compute the joint distribution of 𝑥0, 𝑥1, … , 𝑥𝑇 , recall that joint and conditional densities are linked by the rule

𝑝(𝑥, 𝑦) = 𝑝(𝑦 | 𝑥)𝑝(𝑥) (joint = conditional × marginal)

From this rule we get 𝑝(𝑥0, 𝑥1) = 𝑝(𝑥1 | 𝑥0)𝑝(𝑥0).
The Markov property 𝑝(𝑥𝑡 | 𝑥𝑡−1, … , 𝑥0) = 𝑝(𝑥𝑡 | 𝑥𝑡−1) and repeated applications of the preceding rule lead us to

𝑝(𝑥0, 𝑥1, … , 𝑥𝑇 ) = 𝑝(𝑥0)
𝑇 −1
∏
𝑡=0

𝑝(𝑥𝑡+1 | 𝑥𝑡)
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The marginal 𝑝(𝑥0) is just the primitive 𝑁(𝜇0, Σ0).
In view of (18.1), the conditional densities are

𝑝(𝑥𝑡+1 | 𝑥𝑡) = 𝑁(𝐴𝑥𝑡, 𝐶𝐶′)

Autocovariance Functions

An important object related to the joint distribution is the autocovariance function

Σ𝑡+𝑗,𝑡 ∶= 𝔼[(𝑥𝑡+𝑗 − 𝜇𝑡+𝑗)(𝑥𝑡 − 𝜇𝑡)′] (18.11)

Elementary calculations show that

Σ𝑡+𝑗,𝑡 = 𝐴𝑗Σ𝑡 (18.12)

Notice that Σ𝑡+𝑗,𝑡 in general depends on both 𝑗, the gap between the two dates, and 𝑡, the earlier date.

18.4 Stationarity and Ergodicity

Stationarity and ergodicity are two properties that, when they hold, greatly aid analysis of linear state space models.
Let’s start with the intuition.

18.4.1 Visualizing Stability

Let’s look at some more time series from the same model that we analyzed above.
This picture shows cross-sectional distributions for 𝑦 at times 𝑇 , 𝑇 ′, 𝑇 ″

def cross_plot(A,
C,
G,
steady_state='False',
T0 = 10,
T1 = 50,
T2 = 75,
T4 = 100):

ar = LinearStateSpace(A, C, G, mu_0=np.ones(4))

if steady_state == 'True':
μ_x, μ_y, Σ_x, Σ_y, Σ_yx = ar.stationary_distributions()
ar_state = LinearStateSpace(A, C, G, mu_0=μ_x, Sigma_0=Σ_x)

ymin, ymax = -0.6, 0.6
fig, ax = plt.subplots()
ax.grid(alpha=0.4)
ax.set_ylim(ymin, ymax)
ax.set_ylabel('$y_t$', fontsize=12)
ax.set_xlabel('$time$', fontsize=12)

ax.vlines((T0, T1, T2), -1.5, 1.5)

(continues on next page)
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(continued from previous page)

ax.set_xticks((T0, T1, T2))
ax.set_xticklabels(("$T$", "$T'$", "$T''$"), fontsize=12)
for i in range(80):

rcolor = random.choice(('c', 'g', 'b'))

if steady_state == 'True':
x, y = ar_state.simulate(ts_length=T4)

else:
x, y = ar.simulate(ts_length=T4)

y = y.flatten()
ax.plot(y, color=rcolor, lw=0.8, alpha=0.5)
ax.plot((T0, T1, T2), (y[T0], y[T1], y[T2],), 'ko', alpha=0.5)

plt.show()

cross_plot(A_2, C_2, G_2)

Note how the time series “settle down” in the sense that the distributions at 𝑇 ′ and 𝑇 ″ are relatively similar to each other
— but unlike the distribution at 𝑇 .
Apparently, the distributions of 𝑦𝑡 converge to a fixed long-run distribution as 𝑡 → ∞.
When such a distribution exists it is called a stationary distribution.

18.4.2 Stationary Distributions

In our setting, a distribution 𝜓∞ is said to be stationary for 𝑥𝑡 if

𝑥𝑡 ∼ 𝜓∞ and 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1 ⟹ 𝑥𝑡+1 ∼ 𝜓∞

Since
1. in the present case, all distributions are Gaussian
2. a Gaussian distribution is pinned down by its mean and variance-covariance matrix
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we can restate the definition as follows: 𝜓∞ is stationary for 𝑥𝑡 if

𝜓∞ = 𝑁(𝜇∞, Σ∞)

where 𝜇∞ and Σ∞ are fixed points of (18.4) and (18.5) respectively.

18.4.3 Covariance Stationary Processes

Let’s see what happens to the preceding figure if we start 𝑥0 at the stationary distribution.

cross_plot(A_2, C_2, G_2, steady_state='True')

Now the differences in the observed distributions at 𝑇 , 𝑇 ′ and 𝑇 ″ come entirely from random fluctuations due to the
finite sample size.
By

• our choosing 𝑥0 ∼ 𝑁(𝜇∞, Σ∞)
• the definitions of 𝜇∞ and Σ∞ as fixed points of (18.4) and (18.5) respectively

we’ve ensured that

𝜇𝑡 = 𝜇∞ and Σ𝑡 = Σ∞ for all 𝑡

Moreover, in view of (18.12), the autocovariance function takes the form Σ𝑡+𝑗,𝑡 = 𝐴𝑗Σ∞, which depends on 𝑗 but not
on 𝑡.
This motivates the following definition.
A process {𝑥𝑡} is said to be covariance stationary if

• both 𝜇𝑡 and Σ𝑡 are constant in 𝑡
• Σ𝑡+𝑗,𝑡 depends on the time gap 𝑗 but not on time 𝑡

In our setting, {𝑥𝑡} will be covariance stationary if 𝜇0, Σ0, 𝐴, 𝐶 assume values that imply that none of 𝜇𝑡, Σ𝑡, Σ𝑡+𝑗,𝑡
depends on 𝑡.
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18.4.4 Conditions for Stationarity

The Globally Stable Case

The difference equation 𝜇𝑡+1 = 𝐴𝜇𝑡 is known to have unique fixed point 𝜇∞ = 0 if all eigenvalues of 𝐴 have moduli
strictly less than unity.
That is, if (np.absolute(np.linalg.eigvals(A)) < 1).all() == True.
The difference equation (18.5) also has a unique fixed point in this case, and, moreover

𝜇𝑡 → 𝜇∞ = 0 and Σ𝑡 → Σ∞ as 𝑡 → ∞

regardless of the initial conditions 𝜇0 and Σ0.
This is the globally stable case— see these notes for more a theoretical treatment.
However, global stability is more than we need for stationary solutions, and often more than we want.
To illustrate, consider our second order difference equation example.

Here the state is 𝑥𝑡 = [1 𝑦𝑡 𝑦𝑡−1]′.
Because of the constant first component in the state vector, we will never have 𝜇𝑡 → 0.
How can we find stationary solutions that respect a constant state component?

Processes with a Constant State Component

To investigate such a process, suppose that 𝐴 and 𝐶 take the form

𝐴 = [𝐴1 𝑎
0 1] 𝐶 = [𝐶1

0 ]

where
• 𝐴1 is an (𝑛 − 1) × (𝑛 − 1) matrix
• 𝑎 is an (𝑛 − 1) × 1 column vector

Let 𝑥𝑡 = [𝑥′
1𝑡 1]′ where 𝑥1𝑡 is (𝑛 − 1) × 1.

It follows that

𝑥1,𝑡+1 = 𝐴1𝑥1𝑡 + 𝑎 + 𝐶1𝑤𝑡+1

Let 𝜇1𝑡 = 𝔼[𝑥1𝑡] and take expectations on both sides of this expression to get

𝜇1,𝑡+1 = 𝐴1𝜇1,𝑡 + 𝑎 (18.13)

Assume now that the moduli of the eigenvalues of 𝐴1 are all strictly less than one.
Then (18.13) has a unique stationary solution, namely,

𝜇1∞ = (𝐼 − 𝐴1)−1𝑎

The stationary value of 𝜇𝑡 itself is then 𝜇∞ ∶= [𝜇′
1∞ 1]′.

The stationary values of Σ𝑡 and Σ𝑡+𝑗,𝑡 satisfy

Σ∞ = 𝐴Σ∞𝐴′ + 𝐶𝐶′

Σ𝑡+𝑗,𝑡 = 𝐴𝑗Σ∞
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Notice that here Σ𝑡+𝑗,𝑡 depends on the time gap 𝑗 but not on calendar time 𝑡.
In conclusion, if

• 𝑥0 ∼ 𝑁(𝜇∞, Σ∞) and
• the moduli of the eigenvalues of 𝐴1 are all strictly less than unity

then the {𝑥𝑡} process is covariance stationary, with constant state component.

Note: If the eigenvalues of 𝐴1 are less than unity in modulus, then (a) starting from any initial value, the mean and
variance-covariance matrix both converge to their stationary values; and (b) iterations on (18.5) converge to the fixed
point of the discrete Lyapunov equation in the first line of (18.14).

18.4.5 Ergodicity

Let’s suppose that we’re working with a covariance stationary process.
In this case, we know that the ensemble mean will converge to 𝜇∞ as the sample size 𝐼 approaches infinity.

Averages over Time

Ensemble averages across simulations are interesting theoretically, but in real life, we usually observe only a single real-
ization {𝑥𝑡, 𝑦𝑡}𝑇

𝑡=0.
So now let’s take a single realization and form the time-series averages

̄𝑥 ∶= 1
𝑇

𝑇
∑
𝑡=1

𝑥𝑡 and ̄𝑦 ∶= 1
𝑇

𝑇
∑
𝑡=1

𝑦𝑡

Do these time series averages converge to something interpretable in terms of our basic state-space representation?
The answer depends on something called ergodicity.
Ergodicity is the property that time series and ensemble averages coincide.
More formally, ergodicity implies that time series sample averages converge to their expectation under the stationary
distribution.
In particular,

• 1
𝑇 ∑𝑇

𝑡=1 𝑥𝑡 → 𝜇∞

• 1
𝑇 ∑𝑇

𝑡=1(𝑥𝑡 − ̄𝑥𝑇 )(𝑥𝑡 − ̄𝑥𝑇 )′ → Σ∞

• 1
𝑇 ∑𝑇

𝑡=1(𝑥𝑡+𝑗 − ̄𝑥𝑇 )(𝑥𝑡 − ̄𝑥𝑇 )′ → 𝐴𝑗Σ∞

In our linear Gaussian setting, any covariance stationary process is also ergodic.
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18.5 Noisy Observations

In some settings, the observation equation 𝑦𝑡 = 𝐺𝑥𝑡 is modified to include an error term.
Often this error term represents the idea that the true state can only be observed imperfectly.
To include an error term in the observation we introduce

• An IID sequence of ℓ × 1 random vectors 𝑣𝑡 ∼ 𝑁(0, 𝐼).
• A 𝑘 × ℓ matrix 𝐻 .

and extend the linear state-space system to

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝐺𝑥𝑡 + 𝐻𝑣𝑡
𝑥0 ∼ 𝑁(𝜇0, Σ0)

The sequence {𝑣𝑡} is assumed to be independent of {𝑤𝑡}.
The process {𝑥𝑡} is not modified by noise in the observation equation and its moments, distributions and stability prop-
erties remain the same.
The unconditional moments of 𝑦𝑡 from (18.6) and (18.7) now become

𝔼[𝑦𝑡] = 𝔼[𝐺𝑥𝑡 + 𝐻𝑣𝑡] = 𝐺𝜇𝑡 (18.14)

The variance-covariance matrix of 𝑦𝑡 is easily shown to be

Var[𝑦𝑡] = Var[𝐺𝑥𝑡 + 𝐻𝑣𝑡] = 𝐺Σ𝑡𝐺′ + 𝐻𝐻′ (18.15)

The distribution of 𝑦𝑡 is therefore

𝑦𝑡 ∼ 𝑁(𝐺𝜇𝑡, 𝐺Σ𝑡𝐺′ + 𝐻𝐻′)

18.6 Prediction

The theory of prediction for linear state space systems is elegant and simple.

18.6.1 Forecasting Formulas – Conditional Means

The natural way to predict variables is to use conditional distributions.
For example, the optimal forecast of 𝑥𝑡+1 given information known at time 𝑡 is

𝔼𝑡[𝑥𝑡+1] ∶= 𝔼[𝑥𝑡+1 ∣ 𝑥𝑡, 𝑥𝑡−1, … , 𝑥0] = 𝐴𝑥𝑡

The right-hand side follows from 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1 and the fact that 𝑤𝑡+1 is zero mean and independent of
𝑥𝑡, 𝑥𝑡−1, … , 𝑥0.
That 𝔼𝑡[𝑥𝑡+1] = 𝔼[𝑥𝑡+1 ∣ 𝑥𝑡] is an implication of {𝑥𝑡} having the Markov property.
The one-step-ahead forecast error is

𝑥𝑡+1 − 𝔼𝑡[𝑥𝑡+1] = 𝐶𝑤𝑡+1
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The covariance matrix of the forecast error is

𝔼[(𝑥𝑡+1 − 𝔼𝑡[𝑥𝑡+1])(𝑥𝑡+1 − 𝔼𝑡[𝑥𝑡+1])′] = 𝐶𝐶′

More generally, we’d like to compute the 𝑗-step ahead forecasts 𝔼𝑡[𝑥𝑡+𝑗] and 𝔼𝑡[𝑦𝑡+𝑗].
With a bit of algebra, we obtain

𝑥𝑡+𝑗 = 𝐴𝑗𝑥𝑡 + 𝐴𝑗−1𝐶𝑤𝑡+1 + 𝐴𝑗−2𝐶𝑤𝑡+2 + ⋯ + 𝐴0𝐶𝑤𝑡+𝑗

In view of the IID property, current and past state values provide no information about future values of the shock.
Hence 𝔼𝑡[𝑤𝑡+𝑘] = 𝔼[𝑤𝑡+𝑘] = 0.
It now follows from linearity of expectations that the 𝑗-step ahead forecast of 𝑥 is

𝔼𝑡[𝑥𝑡+𝑗] = 𝐴𝑗𝑥𝑡

The 𝑗-step ahead forecast of 𝑦 is therefore

𝔼𝑡[𝑦𝑡+𝑗] = 𝔼𝑡[𝐺𝑥𝑡+𝑗 + 𝐻𝑣𝑡+𝑗] = 𝐺𝐴𝑗𝑥𝑡

18.6.2 Covariance of Prediction Errors

It is useful to obtain the covariance matrix of the vector of 𝑗-step-ahead prediction errors

𝑥𝑡+𝑗 − 𝔼𝑡[𝑥𝑡+𝑗] =
𝑗−1
∑
𝑠=0

𝐴𝑠𝐶𝑤𝑡−𝑠+𝑗 (18.16)

Evidently,

𝑉𝑗 ∶= 𝔼𝑡[(𝑥𝑡+𝑗 − 𝔼𝑡[𝑥𝑡+𝑗])(𝑥𝑡+𝑗 − 𝔼𝑡[𝑥𝑡+𝑗])′] =
𝑗−1
∑
𝑘=0

𝐴𝑘𝐶𝐶′𝐴𝑘′ (18.17)

𝑉𝑗 defined in (18.17) can be calculated recursively via 𝑉1 = 𝐶𝐶′ and

𝑉𝑗 = 𝐶𝐶′ + 𝐴𝑉𝑗−1𝐴′, 𝑗 ≥ 2 (18.18)

𝑉𝑗 is the conditional covariance matrix of the errors in forecasting 𝑥𝑡+𝑗, conditioned on time 𝑡 information 𝑥𝑡.
Under particular conditions, 𝑉𝑗 converges to

𝑉∞ = 𝐶𝐶′ + 𝐴𝑉∞𝐴′ (18.19)

Equation (18.19) is an example of a discrete Lyapunov equation in the covariance matrix 𝑉∞.
A sufficient condition for 𝑉𝑗 to converge is that the eigenvalues of 𝐴 be strictly less than one in modulus.
Weaker sufficient conditions for convergence associate eigenvalues equaling or exceeding one in modulus with elements
of 𝐶 that equal 0.

18.7 Code

Our preceding simulations and calculations are based on code in the file lss.py from the QuantEcon.py package.
The code implements a class for handling linear state space models (simulations, calculating moments, etc.).
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One Python construct you might not be familiar with is the use of a generator function in the method mo-
ment_sequence().
Go back and read the relevant documentation if you’ve forgotten how generator functions work.
Examples of usage are given in the solutions to the exercises.

18.8 Exercises

Exercise 18.8.1
In several contexts, we want to compute forecasts of geometric sums of future random variables governed by the linear
state-space system (18.1).
We want the following objects

• Forecast of a geometric sum of future 𝑥’s, or 𝔼𝑡 [∑∞
𝑗=0 𝛽𝑗𝑥𝑡+𝑗].

• Forecast of a geometric sum of future 𝑦’s, or 𝔼𝑡 [∑∞
𝑗=0 𝛽𝑗𝑦𝑡+𝑗].

These objects are important components of some famous and interesting dynamic models.
For example,

• if {𝑦𝑡} is a stream of dividends, then 𝔼 [∑∞
𝑗=0 𝛽𝑗𝑦𝑡+𝑗|𝑥𝑡] is a model of a stock price

• if {𝑦𝑡} is the money supply, then 𝔼 [∑∞
𝑗=0 𝛽𝑗𝑦𝑡+𝑗|𝑥𝑡] is a model of the price level

Show that:

𝔼𝑡 [
∞

∑
𝑗=0

𝛽𝑗𝑥𝑡+𝑗] = [𝐼 − 𝛽𝐴]−1𝑥𝑡

and

𝔼𝑡 [
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗] = 𝐺[𝐼 − 𝛽𝐴]−1𝑥𝑡

what must the modulus for every eigenvalue of 𝐴 be less than?

Solution to Exercise 18.8.1
Suppose that every eigenvalue of 𝐴 has modulus strictly less than 1

𝛽 .

It then follows that 𝐼 + 𝛽𝐴 + 𝛽2𝐴2 + ⋯ = [𝐼 − 𝛽𝐴]−1.
This leads to our formulas:

• Forecast of a geometric sum of future 𝑥’s

𝔼𝑡 [
∞

∑
𝑗=0

𝛽𝑗𝑥𝑡+𝑗] = [𝐼 + 𝛽𝐴 + 𝛽2𝐴2 + ⋯ ]𝑥𝑡 = [𝐼 − 𝛽𝐴]−1𝑥𝑡

• Forecast of a geometric sum of future 𝑦’s
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𝔼𝑡 [
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗] = 𝐺[𝐼 + 𝛽𝐴 + 𝛽2𝐴2 + ⋯ ]𝑥𝑡 = 𝐺[𝐼 − 𝛽𝐴]−1𝑥𝑡
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CHAPTER

NINETEEN

RECURSIVE MODELS OF DYNAMIC LINEAR ECONOMIES

Contents

• Recursive Models of Dynamic Linear Economies
– A Suite of Models

– Econometrics

– Dynamic Demand Curves and Canonical Household Technologies

– Gorman Aggregation and Engel Curves

– Partial Equilibrium

– Equilibrium Investment Under Uncertainty

– A Rosen-Topel Housing Model

– Cattle Cycles

– Models of Occupational Choice and Pay

– Permanent Income Models

– Gorman Heterogeneous Households

– Non-Gorman Heterogeneous Households

“Mathematics is the art of giving the same name to different things” – Henri Poincare
“Complete market economies are all alike” – Robert E. Lucas, Jr., (1989)
“Every partial equilibrium model can be reinterpreted as a general equilibrium model.” – Anonymous

19.1 A Suite of Models

This lecture presents a class of linear-quadratic-Gaussian models of general economic equilibrium designed by Lars Peter
Hansen and Thomas J. Sargent [Hansen and Sargent, 2013].
The class of models is implemented in a Python class DLE that is part of quantecon.
Subsequent lectures use the DLE class to implement various instances that have appeared in the economics literature

1. Growth in Dynamic Linear Economies
2. Lucas Asset Pricing using DLE

355



Dynamic Linear Economies

3. IRFs in Hall Model
4. Permanent Income Using the DLE class
5. Rosen schooling model
6. Cattle cycles
7. Shock Non Invertibility

19.1.1 Overview of the Models

In saying that “complete markets are all alike”, Robert E. Lucas, Jr. was noting that all of them have
• a commodity space.
• a space dual to the commodity space in which prices reside.
• endowments of resources.
• peoples’ preferences over goods.
• physical technologies for transforming resources into goods.
• random processes that govern shocks to technologies and preferences and associated information flows.
• a single budget constraint per person.
• the existence of a representative consumer even when there are many people in the model.
• a concept of competitive equilibrium.
• theorems connecting competitive equilibrium allocations to allocations that would be chosen by a benevolent social
planner.

The models have no frictions such as …
• Enforcement difficulties
• Information asymmetries
• Other forms of transactions costs
• Externalities

The models extensively use the powerful ideas of
• Indexing commodities and their prices by time (John R. Hicks).
• Indexing commodities and their prices by chance (Kenneth Arrow).

Much of the imperialism of complete markets models comes from applying these two tricks.
The Hicks trick of indexing commodities by time is the idea that dynamics are a special case of statics.
The Arrow trick of indexing commodities by chance is the idea that analysis of trade under uncertainty is a special
case of the analysis of trade under certainty.
The [Hansen and Sargent, 2013] class of models specify the commodity space, preferences, technologies, stochastic
shocks and information flows in ways that allow the models to be analyzed completely using only the tools of linear time
series models and linear-quadratic optimal control described in the two lectures Linear State Space Models and Linear
Quadratic Control.
There are costs and benefits associated with the simplifications and specializations needed to make a particular model fit
within the [Hansen and Sargent, 2013] class

• the costs are that linear-quadratic structures are sometimes too confining.
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• benefits include computational speed, simplicity, and ability to analyze many model features analytically or nearly
analytically.

A variety of superficially different models are all instances of the [Hansen and Sargent, 2013] class of models
• Lucas asset pricing model
• Lucas-Prescott model of investment under uncertainty
• Asset pricing models with habit persistence
• Rosen-Topel equilibrium model of housing
• Rosen schooling models
• Rosen-Murphy-Scheinkman model of cattle cycles
• Hansen-Sargent-Tallarini model of robustness and asset pricing
• Many more …

The diversity of these models conceals an essential unity that illustrates the quotation by Robert E. Lucas, Jr., with which
we began this lecture.

19.1.2 Forecasting?

A consequence of a single budget constraint per person plus the Hicks-Arrow tricks is that households and firms need not
forecast.
But there exist equivalent structures called recursive competitive equilibria in which they do appear to need to forecast.
In these structures, to forecast, households and firms use:

• equilibrium pricing functions, and
• knowledge of the Markov structure of the economy’s state vector.

19.1.3 Theory and Econometrics

For an application of the [Hansen and Sargent, 2013] class of models, the outcome of theorizing is a stochastic process,
i.e., a probability distribution over sequences of prices and quantities, indexed by parameters describing preferences,
technologies, and information flows.
Another name for that object is a likelihood function, a key object of both frequentist and Bayesian statistics.
There are two important uses of an equilibrium stochastic process or likelihood function.
The first is to solve the direct problem.
The direct problem takes as inputs values of the parameters that define preferences, technologies, and information flows
and as an output characterizes or simulates random paths of quantities and prices.
The second use of an equilibrium stochastic process or likelihood function is to solve the inverse problem.
The inverse problem takes as an input a time series sample of observations on a subset of prices and quantities determined
by the model and from them makes inferences about the parameters that define the model’s preferences, technologies,
and information flows.
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19.1.4 More Details

A [Hansen and Sargent, 2013] economy consists of lists of matrices that describe peoples’ household technologies, their
preferences over consumption services, their production technologies, and their information sets.
There are complete markets in history-contingent commodities.
Competitive equilibrium allocations and prices

• satisfy equations that are easy to write down and solve
• have representations that are convenient econometrically

Different example economies manifest themselves simply as different settings for various matrices.
[Hansen and Sargent, 2013] use these tools:

• A theory of recursive dynamic competitive economies
• Linear optimal control theory
• Recursive methods for estimating and interpreting vector autoregressions

The models are flexible enough to express alternative senses of a representative household
• A single ‘stand-in’ household of the type used to good effect by Edward C. Prescott.
• Heterogeneous households satisfying conditions for Gorman aggregation into a representative household.
• Heterogeneous household technologies that violate conditions for Gorman aggregation but are still susceptible to
aggregation into a single representative household via ‘non-Gorman’ or ‘mongrel’ aggregation’.

These three alternative types of aggregation have different consequences in terms of how prices and allocations can be
computed.
In particular, can prices and an aggregate allocation be computed before the equilibrium allocation to individual hetero-
geneous households is computed?

• Answers are “Yes” for Gorman aggregation, “No” for non-Gorman aggregation.
In summary, the insights and practical benefits from economics to be introduced in this lecture are

• Deeper understandings that come from recognizing common underlying structures.
• Speed and ease of computation that comes from unleashing a common suite of Python programs.

We’ll use the followingmathematical tools
• Stochastic Difference Equations (Linear).
• Duality: LQ Dynamic Programming and Linear Filtering are the same things mathematically.
• The Spectral Factorization Identity (for understanding vector autoregressions and non-Gorman aggregation).

So here is our roadmap.
We’ll describe sets of matrices that pin down

• Information
• Technologies
• Preferences

Then we’ll describe
• Equilibrium concept and computation
• Econometric representation and estimation
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19.1.5 Stochastic Model of Information Flows and Outcomes

We’ll use stochastic linear difference equations to describe information flows and equilibrium outcomes.
The sequence {𝑤𝑡 ∶ 𝑡 = 1, 2, …} is said to be a martingale difference sequence adapted to {𝐽𝑡 ∶ 𝑡 = 0, 1, …} if
𝐸(𝑤𝑡+1|𝐽𝑡) = 0 for 𝑡 = 0, 1, … .
The sequence {𝑤𝑡 ∶ 𝑡 = 1, 2, …} is said to be conditionally homoskedastic if 𝐸(𝑤𝑡+1𝑤′

𝑡+1 ∣ 𝐽𝑡) = 𝐼 for 𝑡 = 0, 1, … .
We assume that the {𝑤𝑡 ∶ 𝑡 = 1, 2, …} process is conditionally homoskedastic.
Let {𝑥𝑡 ∶ 𝑡 = 1, 2, …} be a sequence of 𝑛-dimensional random vectors, i.e. an 𝑛-dimensional stochastic process.
The process {𝑥𝑡 ∶ 𝑡 = 1, 2, …} is constructed recursively using an initial random vector 𝑥0 ∼ 𝒩( ̂𝑥0, Σ0) and a time-
invariant law of motion:

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1

for 𝑡 = 0, 1, … where 𝐴 is an 𝑛 by 𝑛 matrix and 𝐶 is an 𝑛 by 𝑁 matrix.
Evidently, the distribution of 𝑥𝑡+1 conditional on 𝑥𝑡 is 𝒩(𝐴𝑥𝑡, 𝐶𝐶′).

19.1.6 Information Sets

Let 𝐽0 be generated by 𝑥0 and 𝐽𝑡 be generated by 𝑥0, 𝑤1, … , 𝑤𝑡, which means that 𝐽𝑡 consists of the set of all measurable
functions of {𝑥0, 𝑤1, … , 𝑤𝑡}.

19.1.7 Prediction Theory

The optimal forecast of 𝑥𝑡+1 given current information is

𝐸(𝑥𝑡+1 ∣ 𝐽𝑡) = 𝐴𝑥𝑡

and the one-step-ahead forecast error is

𝑥𝑡+1 − 𝐸(𝑥𝑡+1 ∣ 𝐽𝑡) = 𝐶𝑤𝑡+1

The covariance matrix of 𝑥𝑡+1 conditioned on 𝐽𝑡 is

𝐸(𝑥𝑡+1 − 𝐸(𝑥𝑡+1 ∣ 𝐽𝑡))(𝑥𝑡+1 − 𝐸(𝑥𝑡+1 ∣ 𝐽𝑡))′ = 𝐶𝐶′

A nonrecursive expression for 𝑥𝑡 as a function of 𝑥0, 𝑤1, 𝑤2, … , 𝑤𝑡 is

𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝐶𝑤𝑡
= 𝐴2𝑥𝑡−2 + 𝐴𝐶𝑤𝑡−1 + 𝐶𝑤𝑡

= [
𝑡−1
∑
𝜏=0

𝐴𝜏𝐶𝑤𝑡−𝜏] + 𝐴𝑡𝑥0

Shift forward in time:

𝑥𝑡+𝑗 =
𝑗−1
∑
𝑠=0

𝐴𝑠𝐶𝑤𝑡+𝑗−𝑠 + 𝐴𝑗𝑥𝑡

Projecting on the information set {𝑥0, 𝑤𝑡, 𝑤𝑡−1, … , 𝑤1} gives

𝐸𝑡𝑥𝑡+𝑗 = 𝐴𝑗𝑥𝑡
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where 𝐸𝑡(⋅) ≡ 𝐸[(⋅) ∣ 𝑥0, 𝑤𝑡, 𝑤𝑡−1, … , 𝑤1] = 𝐸(⋅) ∣ 𝐽𝑡, and 𝑥𝑡 is in 𝐽𝑡.

It is useful to obtain the covariance matrix of the 𝑗-step-ahead prediction error 𝑥𝑡+𝑗 − 𝐸𝑡𝑥𝑡+𝑗 = ∑𝑗−1
𝑠=0 𝐴𝑠𝐶𝑤𝑡−𝑠+𝑗.

Evidently,

𝐸𝑡(𝑥𝑡+𝑗 − 𝐸𝑡𝑥𝑡+𝑗)(𝑥𝑡+𝑗 − 𝐸𝑡𝑥𝑡+𝑗)′ =
𝑗−1
∑
𝑘=0

𝐴𝑘𝐶𝐶′𝐴𝑘′ ≡ 𝑣𝑗

𝑣𝑗 can be calculated recursively via

𝑣1 = 𝐶𝐶′

𝑣𝑗 = 𝐶𝐶′ + 𝐴𝑣𝑗−1𝐴′, 𝑗 ≥ 2

19.1.8 Orthogonal Decomposition

To decompose these covariances into parts attributable to the individual components of𝑤𝑡, we let 𝑖𝜏 be an𝑁 -dimensional
column vector of zeroes except in position 𝜏 , where there is a one. Define a matrix 𝜐𝑗,𝜏

𝜐𝑗,𝜏 =
𝑗−1
∑
𝑘=0

𝐴𝑘𝐶𝑖𝜏 𝑖′
𝜏𝐶′𝐴′𝑘.

Note that ∑𝑁
𝜏=1 𝑖𝜏 𝑖′

𝜏 = 𝐼 , so that we have
𝑁

∑
𝜏=1

𝜐𝑗,𝜏 = 𝜐𝑗

Evidently, the matrices {𝜐𝑗,𝜏 , 𝜏 = 1, … , 𝑁} give an orthogonal decomposition of the covariance matrix of 𝑗-step-ahead
prediction errors into the parts attributable to each of the components 𝜏 = 1, … , 𝑁 .

19.1.9 Taste and Technology Shocks

𝐸(𝑤𝑡 ∣ 𝐽𝑡−1) = 0 and 𝐸(𝑤𝑡𝑤′
𝑡 ∣ 𝐽𝑡−1) = 𝐼 for 𝑡 = 1, 2, …

𝑏𝑡 = 𝑈𝑏𝑧𝑡 and 𝑑𝑡 = 𝑈𝑑𝑧𝑡,

𝑈𝑏 and 𝑈𝑑 are matrices that select entries of 𝑧𝑡. The law of motion for {𝑧𝑡 ∶ 𝑡 = 0, 1, …} is

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1 for 𝑡 = 0, 1, …

where 𝑧0 is a given initial condition. The eigenvalues of the matrix 𝐴22 have absolute values that are less than or equal to
one.
Thus, in summary, our model of information and shocks is

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1
𝑏𝑡 = 𝑈𝑏𝑧𝑡
𝑑𝑡 = 𝑈𝑑𝑧𝑡.

We can now briefly summarize other components of our economies, in particular
• Production technologies
• Household technologies
• Household preferences

360 Chapter 19. Recursive Models of Dynamic Linear Economies



Dynamic Linear Economies

19.1.10 Production Technology

Where 𝑐𝑡 is a vector of consumption rates, 𝑘𝑡 is a vector of physical capital goods, 𝑔𝑡 is a vector intermediate productions
goods, 𝑑𝑡 is a vector of technology shocks, the production technology is

Φ𝑐𝑐𝑡 + Φ𝑔𝑔𝑡 + Φ𝑖𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡
𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡

𝑔𝑡 ⋅ 𝑔𝑡 = ℓ2
𝑡

Here Φ𝑐, Φ𝑔, Φ𝑖, Γ, Δ𝑘, Θ𝑘 are all matrices conformable to the vectors they multiply and ℓ𝑡 is a disutility generating
resource supplied by the household.
For technical reasons that facilitate computations, we make the following.
Assumption: [Φ𝑐 Φ𝑔] is nonsingular.

19.1.11 Household Technology

Households confront a technology that allows them to devote consumption goods to construct a vector ℎ𝑡 of household
capital goods and a vector 𝑠𝑡 of utility generating house services

𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡
ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡

where Λ, Π, Δℎ, Θℎ are matrices that pin down the household technology.
We make the following
Assumption: The absolute values of the eigenvalues of Δℎ are less than or equal to one.
Below, we’ll outline further assumptions that we shall occasionally impose.

19.1.12 Preferences

Where 𝑏𝑡 is a stochastic process of preference shocks that will play the role of demand shifters, the representative house-
hold orders stochastic processes of consumption services 𝑠𝑡 according to

(1
2)𝐸

∞
∑
𝑡=0

𝛽𝑡[(𝑠𝑡 − 𝑏𝑡) ⋅ (𝑠𝑡 − 𝑏𝑡) + ℓ2
𝑡 ]∣𝐽0, 0 < 𝛽 < 1

We now proceed to give examples of production and household technologies that appear in various models that appear in
the literature.
First, we give examples of production Technologies

Φ𝑐𝑐𝑡 + Φ𝑔𝑔𝑡 + Φ𝑖𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡

∣ 𝑔𝑡 ∣≤ ℓ𝑡

so we’ll be looking for specifications of the matrices Φ𝑐, Φ𝑔, Φ𝑖, Γ, Δ𝑘, Θ𝑘 that define them.
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19.1.13 Endowment Economy

There is a single consumption good that cannot be stored over time.
In time period 𝑡, there is an endowment 𝑑𝑡 of this single good.
There is neither a capital stock, nor an intermediate good, nor a rate of investment.
So 𝑐𝑡 = 𝑑𝑡.
To implement this specification, we can choose𝐴22, 𝐶2, and𝑈𝑑 to make 𝑑𝑡 follow any of a variety of stochastic processes.
To satisfy our earlier rank assumption, we set:

𝑐𝑡 + 𝑖𝑡 = 𝑑1𝑡

𝑔𝑡 = 𝜙1𝑖𝑡

where 𝜙1 is a small positive number.
To implement this version, we set Δ𝑘 = Θ𝑘 = 0 and

Φ𝑐 = [1
0] , Φ𝑖 = [ 1

𝜙1
] , Φ𝑔 = [ 0

−1] , Γ = [0
0] , 𝑑𝑡 = [𝑑1𝑡

0 ]

We can use this specification to create a linear-quadratic version of Lucas’s (1978) asset pricing model.

19.1.14 Single-Period Adjustment Costs

There is a single consumption good, a single intermediate good, and a single investment good.
The technology is described by

𝑐𝑡 = 𝛾𝑘𝑡−1 + 𝑑1𝑡, 𝛾 > 0
𝜙1𝑖𝑡 = 𝑔𝑡 + 𝑑2𝑡, 𝜙1 > 0

ℓ2
𝑡 = 𝑔2

𝑡
𝑘𝑡 = 𝛿𝑘𝑘𝑡−1 + 𝑖𝑡, 0 < 𝛿𝑘 < 1

Set

Φ𝑐 = [1
0] , Φ𝑔 = [ 0

−1] , Φ𝑖 = [ 0
𝜙1

]

Γ = [𝛾
0] , Δ𝑘 = 𝛿𝑘, Θ𝑘 = 1

We set 𝐴22, 𝐶2 and 𝑈𝑑 to make (𝑑1𝑡, 𝑑2𝑡)′ = 𝑑𝑡 follow a desired stochastic process.
Now we describe some examples of preferences, which as we have seen are ordered by

− (1
2) 𝐸

∞
∑
𝑡=0

𝛽𝑡 [(𝑠𝑡 − 𝑏𝑡) ⋅ (𝑠𝑡 − 𝑏𝑡) + (ℓ𝑡)2] ∣ 𝐽0 , 0 < 𝛽 < 1

where household services are produced via the household technology

ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡

𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡

and we make
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Assumption: The absolute values of the eigenvalues of Δℎ are less than or equal to one.
Later we shall introduce canonical household technologies that satisfy an ‘invertibility’ requirement relating sequences
{𝑠𝑡} of services and {𝑐𝑡} of consumption flows.
And we’ll describe how to obtain a canonical representation of a household technology from one that is not canonical.
Here are some examples of household preferences.
Time Separable preferences

−1
2𝐸

∞
∑
𝑡=0

𝛽𝑡 [(𝑐𝑡 − 𝑏𝑡)2 + ℓ2
𝑡 ] ∣ 𝐽0 , 0 < 𝛽 < 1

Consumer Durables

ℎ𝑡 = 𝛿ℎℎ𝑡−1 + 𝑐𝑡 , 0 < 𝛿ℎ < 1

Services at 𝑡 are related to the stock of durables at the beginning of the period:

𝑠𝑡 = 𝜆ℎ𝑡−1 , 𝜆 > 0

Preferences are ordered by

−1
2𝐸

∞
∑
𝑡=0

𝛽𝑡 [(𝜆ℎ𝑡−1 − 𝑏𝑡)2 + ℓ2
𝑡 ] ∣ 𝐽0

Set Δℎ = 𝛿ℎ, Θℎ = 1, Λ = 𝜆, Π = 0.
Habit Persistence

−(1
2) 𝐸

∞
∑
𝑡=0

𝛽𝑡[(𝑐𝑡 − 𝜆(1 − 𝛿ℎ)
∞

∑
𝑗=0

𝛿𝑗
ℎ 𝑐𝑡−𝑗−1 − 𝑏𝑡)

2 + ℓ2
𝑡 ]∣𝐽0

0 < 𝛽 < 1 , 0 < 𝛿ℎ < 1 , 𝜆 > 0
Here the effective bliss point 𝑏𝑡 + 𝜆(1 − 𝛿ℎ) ∑∞

𝑗=0 𝛿𝑗
ℎ 𝑐𝑡−𝑗−1 shifts in response to a moving average of past consumption.

Initial Conditions
Preferences of this form require an initial condition for the geometric sum ∑∞

𝑗=0 𝛿𝑗
ℎ𝑐𝑡−𝑗−1 that we specify as an initial

condition for the ‘stock of household durables,’ ℎ−1.
Set

ℎ𝑡 = 𝛿ℎℎ𝑡−1 + (1 − 𝛿ℎ)𝑐𝑡 , 0 < 𝛿ℎ < 1

ℎ𝑡 = (1 − 𝛿ℎ)
𝑡

∑
𝑗=0

𝛿𝑗
ℎ 𝑐𝑡−𝑗 + 𝛿𝑡+1

ℎ ℎ−1

𝑠𝑡 = −𝜆ℎ𝑡−1 + 𝑐𝑡, 𝜆 > 0
To implement, set Λ = −𝜆, Π = 1, Δℎ = 𝛿ℎ, Θℎ = 1 − 𝛿ℎ.
Seasonal Habit Persistence

−(1
2) 𝐸

∞
∑
𝑡=0

𝛽𝑡[(𝑐𝑡 − 𝜆(1 − 𝛿ℎ)
∞

∑
𝑗=0

𝛿𝑗
ℎ 𝑐𝑡−4𝑗−4 − 𝑏𝑡)

2 + ℓ2
𝑡 ]

0 < 𝛽 < 1 , 0 < 𝛿ℎ < 1 , 𝜆 > 0
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Here the effective bliss point 𝑏𝑡 +𝜆(1−𝛿ℎ) ∑∞
𝑗=0 𝛿𝑗

ℎ 𝑐𝑡−4𝑗−4 shifts in response to a moving average of past consumptions
of the same quarter.
To implement, set

ℎ̃𝑡 = 𝛿ℎℎ̃𝑡−4 + (1 − 𝛿ℎ)𝑐𝑡 , 0 < 𝛿ℎ < 1

This implies that

ℎ𝑡 =
⎡
⎢
⎢
⎣

ℎ̃𝑡
ℎ̃𝑡−1
ℎ̃𝑡−2
ℎ̃𝑡−3

⎤
⎥
⎥
⎦

=
⎡
⎢⎢
⎣

0 0 0 𝛿ℎ
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥
⎦

⎡
⎢
⎢
⎣

ℎ̃𝑡−1
ℎ̃𝑡−2
ℎ̃𝑡−3
ℎ̃𝑡−4

⎤
⎥
⎥
⎦

+
⎡
⎢⎢
⎣

(1 − 𝛿ℎ)
0
0
0

⎤
⎥⎥
⎦

𝑐𝑡

with consumption services

𝑠𝑡 = − [0 0 0 −𝜆] ℎ𝑡−1 + 𝑐𝑡 , 𝜆 > 0

Adjustment Costs.
Recall

−(1
2)𝐸

∞
∑
𝑡=0

𝛽𝑡[(𝑐𝑡 − 𝑏1𝑡)2 + 𝜆2(𝑐𝑡 − 𝑐𝑡−1)2 + ℓ2
𝑡 ] ∣ 𝐽0

0 < 𝛽 < 1 , 𝜆 > 0
To capture adjustment costs, set

ℎ𝑡 = 𝑐𝑡

𝑠𝑡 = [ 0
−𝜆] ℎ𝑡−1 + [1

𝜆] 𝑐𝑡

so that

𝑠1𝑡 = 𝑐𝑡

𝑠2𝑡 = 𝜆(𝑐𝑡 − 𝑐𝑡−1)
We set the first component 𝑏1𝑡 of 𝑏𝑡 to capture the stochastic bliss process and set the second component identically equal
to zero.
Thus, we set Δℎ = 0, Θℎ = 1

Λ = [ 0
−𝜆] , Π = [1

𝜆]

Multiple Consumption Goods

Λ = [0
0] and Π = [𝜋1 0

𝜋2 𝜋3
]

−1
2𝛽𝑡(Π𝑐𝑡 − 𝑏𝑡)′(Π𝑐𝑡 − 𝑏𝑡)

𝜇𝑡 = −𝛽𝑡[Π′Π 𝑐𝑡 − Π′ 𝑏𝑡]

𝑐𝑡 = −(Π′Π)−1𝛽−𝑡𝜇𝑡 + (Π′Π)−1Π′𝑏𝑡
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This is called the Frisch demand function for consumption.
We can think of the vector 𝜇𝑡 as playing the role of prices, up to a common factor, for all dates and states.
The scale factor is determined by the choice of numeraire.
Notions of substitutes and complements can be defined in terms of these Frisch demand functions.
Two goods can be said to be substitutes if the cross-price effect is positive and to be complements if this effect is
negative.
Hence this classification is determined by the off-diagonal element of −(Π′Π)−1, which is equal to 𝜋2𝜋3/ det(Π′Π).
If 𝜋2 and 𝜋3 have the same sign, the goods are substitutes.
If they have opposite signs, the goods are complements.
To summarize, our economic structure consists of the matrices that define the following components:
Information and shocks

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1
𝑏𝑡 = 𝑈𝑏𝑧𝑡
𝑑𝑡 = 𝑈𝑑𝑧𝑡

Production Technology

Φ𝑐𝑐𝑡 + Φ𝑔𝑔𝑡 + Φ𝑖𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡
𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡

𝑔𝑡 ⋅ 𝑔𝑡 = ℓ2
𝑡

Household Technology

𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡
ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡

Preferences

(1
2)𝐸

∞
∑
𝑡=0

𝛽𝑡[(𝑠𝑡 − 𝑏𝑡) ⋅ (𝑠𝑡 − 𝑏𝑡) + ℓ2
𝑡 ]∣𝐽0, 0 < 𝛽 < 1

Next steps: we move on to discuss two closely connected concepts
• A Planning Problem or Optimal Resource Allocation Problem
• Competitive Equilibrium

19.1.15 Optimal Resource Allocation

Imagine a planner who chooses sequences {𝑐𝑡, 𝑖𝑡, 𝑔𝑡}∞
𝑡=0 to maximize

−(1/2)𝐸
∞

∑
𝑡=0

𝛽𝑡[(𝑠𝑡 − 𝑏𝑡) ⋅ (𝑠𝑡 − 𝑏𝑡) + 𝑔𝑡 ⋅ 𝑔𝑡]∣𝐽0

subject to the constraints

Φ𝑐𝑐𝑡 + Φ𝑔 𝑔𝑡 + Φ𝑖𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡,
𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡,
ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡,
𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡,

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1, 𝑏𝑡 = 𝑈𝑏𝑧𝑡, and 𝑑𝑡 = 𝑈𝑑𝑧𝑡
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and initial conditions for ℎ−1, 𝑘−1, and 𝑧0.
Throughout, we shall impose the following square summability conditions

𝐸
∞

∑
𝑡=0

𝛽𝑡ℎ𝑡 ⋅ ℎ𝑡 ∣ 𝐽0 < ∞ and 𝐸
∞

∑
𝑡=0

𝛽𝑡𝑘𝑡 ⋅ 𝑘𝑡 ∣ 𝐽0 < ∞

Define:

𝐿2
0 = [{𝑦𝑡} ∶ 𝑦𝑡 is a random variable in 𝐽𝑡 and 𝐸

∞
∑
𝑡=0

𝛽𝑡𝑦2
𝑡 ∣ 𝐽0 < +∞]

Thus, we require that each component of ℎ𝑡 and each component of 𝑘𝑡 belong to 𝐿2
0.

We shall compare and utilize two approaches to solving the planning problem
• Lagrangian formulation
• Dynamic programming

19.1.16 Lagrangian Formulation

Form the Lagrangian

ℒ = −𝐸
∞

∑
𝑡=0

𝛽𝑡[(1
2)[(𝑠𝑡 − 𝑏𝑡) ⋅ (𝑠𝑡 − 𝑏𝑡) + 𝑔𝑡 ⋅ 𝑔𝑡]

+ 𝑀𝑑′
𝑡 ⋅ (Φ𝑐𝑐𝑡 + Φ𝑔𝑔𝑡 + Φ𝑖𝑖𝑡 − Γ𝑘𝑡−1 − 𝑑𝑡)

+ 𝑀𝑘′
𝑡 ⋅ (𝑘𝑡 − Δ𝑘𝑘𝑡−1 − Θ𝑘𝑖𝑡)

+ 𝑀ℎ′
𝑡 ⋅ (ℎ𝑡 − Δℎℎ𝑡−1 − Θℎ𝑐𝑡)

+ 𝑀𝑠′
𝑡 ⋅ (𝑠𝑡 − Λℎ𝑡−1 − Π𝑐𝑡)]∣𝐽0

The planner maximizes ℒ with respect to the quantities {𝑐𝑡, 𝑖𝑡, 𝑔𝑡}∞
𝑡=0 and minimizes with respect to the Lagrange mul-

tipliers 𝑀𝑑
𝑡 , 𝑀𝑘

𝑡 , 𝑀ℎ
𝑡 , 𝑀𝑠

𝑡 .
First-order necessary conditions for maximization with respect to 𝑐𝑡, 𝑔𝑡, ℎ𝑡, 𝑖𝑡, 𝑘𝑡, and 𝑠𝑡, respectively, are:

−Φ′
𝑐𝑀𝑑

𝑡 + Θ′
ℎ𝑀ℎ

𝑡 + Π′𝑀𝑠
𝑡 = 0,

− 𝑔𝑡 − Φ′
𝑔𝑀𝑑

𝑡 = 0,
−𝑀ℎ

𝑡 + 𝛽𝐸(Δ′
ℎ𝑀ℎ

𝑡+1 + Λ′𝑀𝑠
𝑡+1) ∣ 𝐽𝑡 = 0,

− Φ′
𝑖𝑀𝑑

𝑡 + Θ′
𝑘𝑀𝑘

𝑡 = 0,
−𝑀𝑘

𝑡 + 𝛽𝐸(Δ′
𝑘𝑀𝑘

𝑡+1 + Γ′𝑀𝑑
𝑡+1) ∣ 𝐽𝑡 = 0,

− 𝑠𝑡 + 𝑏𝑡 − 𝑀𝑠
𝑡 = 0

for 𝑡 = 0, 1, ….
In addition, we have the complementary slackness conditions (these recover the original transition equations) and also
transversality conditions

lim
𝑡→∞

𝛽𝑡𝐸[𝑀𝑘′
𝑡 𝑘𝑡] ∣ 𝐽0 = 0

lim
𝑡→∞

𝛽𝑡𝐸[𝑀ℎ′
𝑡 ℎ𝑡] ∣ 𝐽0 = 0

The system formed by the FONCs and the transition equations can be handed over to Python.
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Python will solve the planning problem for fixed parameter values.
Here are the Python Ready Equations

−Φ′
𝑐𝑀𝑑

𝑡 + Θ′
ℎ𝑀ℎ

𝑡 + Π′𝑀𝑠
𝑡 = 0,

− 𝑔𝑡 − Φ′
𝑔𝑀𝑑

𝑡 = 0,
−𝑀ℎ

𝑡 + 𝛽𝐸(Δ′
ℎ𝑀ℎ

𝑡+1 + Λ′𝑀𝑠
𝑡+1) ∣ 𝐽𝑡 = 0,

− Φ′
𝑖𝑀𝑑

𝑡 + Θ′
𝑘𝑀𝑘

𝑡 = 0,
−𝑀𝑘

𝑡 + 𝛽𝐸(Δ′
𝑘𝑀𝑘

𝑡+1 + Γ′𝑀𝑑
𝑡+1) ∣ 𝐽𝑡 = 0,

− 𝑠𝑡 + 𝑏𝑡 − 𝑀𝑠
𝑡 = 0

Φ𝑐𝑐𝑡 + Φ𝑔 𝑔𝑡 + Φ𝑖𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡,
𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡,
ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡,
𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡,

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1, 𝑏𝑡 = 𝑈𝑏𝑧𝑡, and 𝑑𝑡 = 𝑈𝑑𝑧𝑡

The Lagrange multipliers or shadow prices satisfy

𝑀𝑠
𝑡 = 𝑏𝑡 − 𝑠𝑡

𝑀ℎ
𝑡 = 𝐸[

∞
∑
𝜏=1

𝛽𝜏(Δ′
ℎ)𝜏−1Λ′𝑀𝑠

𝑡+𝜏 ∣ 𝐽𝑡]

𝑀𝑑
𝑡 = [Φ′

𝑐
Φ′

𝑔
]

−1
[Θ′

ℎ𝑀ℎ
𝑡 + Π′𝑀𝑠

𝑡
−𝑔𝑡

]

𝑀𝑘
𝑡 = 𝐸[

∞
∑
𝜏=1

𝛽𝜏(Δ′
𝑘)𝜏−1Γ′𝑀𝑑

𝑡+𝜏 ∣ 𝐽𝑡]

𝑀 𝑖
𝑡 = Θ′

𝑘𝑀𝑘
𝑡

Although it is possible to usematrix operator methods to solve the abovePython ready equations, that is not the approach
we’ll use.
Instead, we’ll use dynamic programming to get recursive representations for both quantities and shadow prices.

19.1.17 Dynamic Programming

Dynamic Programming always starts with the word let.
Thus, let 𝑉 (𝑥0) be the optimal value function for the planning problem as a function of the initial state vector 𝑥0.
(Thus, in essence, dynamic programming amounts to an application of a guess and verify method in which we begin
with a guess about the answer to the problem we want to solve. That’s why we start with let 𝑉 (𝑥0) be the (value of the)
answer to the problem, then establish and verify a bunch of conditions 𝑉 (𝑥0) has to satisfy if indeed it is the answer)
The optimal value function 𝑉 (𝑥) satisfies the Bellman equation

𝑉 (𝑥0) = max
𝑐0,𝑖0,𝑔0

[−.5[(𝑠0 − 𝑏0) ⋅ (𝑠0 − 𝑏0) + 𝑔0 ⋅ 𝑔0] + 𝛽𝐸𝑉 (𝑥1)]

subject to the linear constraints
Φ𝑐𝑐0 + Φ𝑔𝑔0 + Φ𝑖𝑖0 = Γ𝑘−1 + 𝑑0,

𝑘0 = Δ𝑘𝑘−1 + Θ𝑘𝑖0,
ℎ0 = Δℎℎ−1 + Θℎ𝑐0,
𝑠0 = Λℎ−1 + Π𝑐0,
𝑧1 = 𝐴22𝑧0 + 𝐶2𝑤1, 𝑏0 = 𝑈𝑏𝑧0 and 𝑑0 = 𝑈𝑑𝑧0
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Because this is a linear-quadratic dynamic programming problem, it turns out that the value function has the form

𝑉 (𝑥) = 𝑥′𝑃𝑥 + 𝜌

Thus, we want to solve an instance of the following linear-quadratic dynamic programming problem:
Choose a contingency plan for {𝑥𝑡+1, 𝑢𝑡}∞

𝑡=0 to maximize

−𝐸
∞

∑
𝑡=0

𝛽𝑡[𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝑢′
𝑡𝑊 ′𝑥𝑡], 0 < 𝛽 < 1

subject to

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1, 𝑡 ≥ 0

where 𝑥0 is given; 𝑥𝑡 is an 𝑛 × 1 vector of state variables, and 𝑢𝑡 is a 𝑘 × 1 vector of control variables.
We assume 𝑤𝑡+1 is a martingale difference sequence with 𝐸𝑤𝑡𝑤′

𝑡 = 𝐼 , and that 𝐶 is a matrix conformable to 𝑥 and 𝑤.
The optimal value function 𝑉 (𝑥) satisfies the Bellman equation

𝑉 (𝑥𝑡) = max
𝑢𝑡

{−(𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝑢′
𝑡𝑊𝑥𝑡) + 𝛽𝐸𝑡𝑉 (𝑥𝑡+1)}

where maximization is subject to

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1, 𝑡 ≥ 0

𝑉 (𝑥𝑡) = −𝑥′
𝑡𝑃𝑥𝑡 − 𝜌

𝑃 satisfies

𝑃 = 𝑅 + 𝛽𝐴′𝑃𝐴 − (𝛽𝐴′𝑃𝐵 + 𝑊)(𝑄 + 𝛽𝐵′𝑃𝐵)−1(𝛽𝐵′𝑃𝐴 + 𝑊 ′)

This equation in 𝑃 is called the algebraic matrix Riccati equation.
The optimal decision rule is 𝑢𝑡 = −𝐹𝑥𝑡, where

𝐹 = (𝑄 + 𝛽𝐵′𝑃𝐵)−1(𝛽𝐵′𝑃𝐴 + 𝑊 ′)

The optimum decision rule for 𝑢𝑡 is independent of the parameters 𝐶, and so of the noise statistics.
Iterating on the Bellman operator leads to

𝑉𝑗+1(𝑥𝑡) = max
𝑢𝑡

{−(𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝑢′
𝑡𝑊𝑥𝑡) + 𝛽𝐸𝑡𝑉𝑗(𝑥𝑡+1)}

𝑉𝑗(𝑥𝑡) = −𝑥′
𝑡𝑃𝑗𝑥𝑡 − 𝜌𝑗

where 𝑃𝑗 and 𝜌𝑗 satisfy the equations

𝑃𝑗+1 = 𝑅 + 𝛽𝐴′𝑃𝑗𝐴 − (𝛽𝐴′𝑃𝑗𝐵 + 𝑊)(𝑄 + 𝛽𝐵′𝑃𝑗𝐵)−1(𝛽𝐵′𝑃𝑗𝐴 + 𝑊 ′)
𝜌𝑗+1 = 𝛽𝜌𝑗 + 𝛽 trace 𝑃𝑗𝐶𝐶′

We can now state the planning problem as a dynamic programming problem

max
{𝑢𝑡,𝑥𝑡+1}

−𝐸
∞

∑
𝑡=0

𝛽𝑡[𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝑢′
𝑡𝑊 ′𝑥𝑡], 0 < 𝛽 < 1
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where maximization is subject to

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1, 𝑡 ≥ 0

𝑥𝑡 = ⎡⎢
⎣

ℎ𝑡−1
𝑘𝑡−1
𝑧𝑡

⎤⎥
⎦

, 𝑢𝑡 = 𝑖𝑡

where

𝐴 = ⎡⎢
⎣

Δℎ Θℎ𝑈𝑐[Φ𝑐 Φ𝑔]−1Γ Θℎ𝑈𝑐[Φ𝑐 Φ𝑔]−1𝑈𝑑
0 Δ𝑘 0
0 0 𝐴22

⎤⎥
⎦

𝐵 = ⎡⎢
⎣

−Θℎ𝑈𝑐[Φ𝑐 Φ𝑔]−1Φ𝑖
Θ𝑘
0

⎤⎥
⎦

, 𝐶 = ⎡⎢
⎣

0
0

𝐶2

⎤⎥
⎦

[𝑥𝑡
𝑢𝑡

]
′
𝑆 [𝑥𝑡

𝑢𝑡
] = [𝑥𝑡

𝑢𝑡
]

′
[ 𝑅 𝑊
𝑊 ′ 𝑄 ] [𝑥𝑡

𝑢𝑡
]

𝑆 = (𝐺′𝐺 + 𝐻′𝐻)/2
𝐻 = [Λ ⋮ Π𝑈𝑐[Φ𝑐 Φ𝑔]−1Γ ⋮ Π𝑈𝑐[Φ𝑐 Φ𝑔]−1𝑈𝑑 − 𝑈𝑏 ⋮ −Π𝑈𝑐[Φ𝑐 Φ𝑔]−1Φ𝑖]

𝐺 = 𝑈𝑔[Φ𝑐 Φ𝑔]−1[0 ⋮ Γ ⋮ 𝑈𝑑 ⋮ −Φ𝑖].
Lagrange multipliers as gradient of value function
A useful fact is that Lagrange multipliers equal gradients of the planner’s value function

ℳ𝑘
𝑡 = 𝑀𝑘𝑥𝑡 and 𝑀ℎ

𝑡 = 𝑀ℎ𝑥𝑡 where
𝑀𝑘 = 2𝛽[0 𝐼 0]𝑃𝐴𝑜

𝑀ℎ = 2𝛽[𝐼 0 0]𝑃𝐴𝑜

ℳ𝑠
𝑡 = 𝑀𝑠𝑥𝑡 where 𝑀𝑠 = (𝑆𝑏 − 𝑆𝑠) and 𝑆𝑏 = [0 0 𝑈𝑏]

ℳ𝑑
𝑡 = 𝑀𝑑𝑥𝑡 where 𝑀𝑑 = [Φ′

𝑐
Φ′

𝑔
]

−1
[Θ′

ℎ𝑀ℎ + Π′𝑀𝑠
−𝑆𝑔

]

ℳ𝑐
𝑡 = 𝑀𝑐𝑥𝑡 where 𝑀𝑐 = Θ′

ℎ𝑀ℎ + Π′𝑀𝑠

ℳ𝑖
𝑡 = 𝑀𝑖𝑥𝑡 where 𝑀𝑖 = Θ′

𝑘𝑀𝑘

We will use this fact and these equations to compute competitive equilibrium prices.

19.1.18 Other mathematical infrastructure

Let’s start with describing the commodity space and pricing functional for our competitive equilibrium.
For the commodity space, we use

𝐿2
0 = [{𝑦𝑡} ∶ 𝑦𝑡 is a random variable in 𝐽𝑡 and 𝐸

∞
∑
𝑡=0

𝛽𝑡𝑦2
𝑡 ∣ 𝐽0 < +∞]

For pricing functionals, we express values as inner products

𝜋(𝑐) = 𝐸
∞

∑
𝑡=0

𝛽𝑡𝑝0
𝑡 ⋅ 𝑐𝑡 ∣ 𝐽0

where 𝑝0
𝑡 belongs to 𝐿2

0.
With these objects in our toolkit, we move on to state the problem of a Representative Household in a competitive
equilibrium.
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19.1.19 Representative Household

The representative household owns endowment process and initial stocks of ℎ and 𝑘 and chooses stochastic processes for
{𝑐𝑡, 𝑠𝑡, ℎ𝑡, ℓ𝑡}∞

𝑡=0, each element of which is in 𝐿2
0, to maximize

− 1
2 𝐸0

∞
∑
𝑡=0

𝛽𝑡 [(𝑠𝑡 − 𝑏𝑡) ⋅ (𝑠𝑡 − 𝑏𝑡) + ℓ2
𝑡 ]

subject to

𝐸
∞

∑
𝑡=0

𝛽𝑡 𝑝0
𝑡 ⋅ 𝑐𝑡 ∣ 𝐽0 = 𝐸

∞
∑
𝑡=0

𝛽𝑡 (𝑤0
𝑡 ℓ𝑡 + 𝛼0

𝑡 ⋅ 𝑑𝑡) ∣ 𝐽0 + 𝑣0 ⋅ 𝑘−1

𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡

ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡, ℎ−1, 𝑘−1 given

We now describe the problems faced by two types of firms called type I and type II.

19.1.20 Type I Firm

A type I firm rents capital and labor and endowments and produces 𝑐𝑡, 𝑖𝑡.
It chooses stochastic processes for {𝑐𝑡, 𝑖𝑡, 𝑘𝑡, ℓ𝑡, 𝑔𝑡, 𝑑𝑡}, each element of which is in 𝐿2

0, to maximize

𝐸0
∞

∑
𝑡=0

𝛽𝑡 (𝑝0
𝑡 ⋅ 𝑐𝑡 + 𝑞0

𝑡 ⋅ 𝑖𝑡 − 𝑟0
𝑡 ⋅ 𝑘𝑡−1 − 𝑤0

𝑡 ℓ𝑡 − 𝛼0
𝑡 ⋅ 𝑑𝑡)

subject to

Φ𝑐 𝑐𝑡 + Φ𝑔 𝑔𝑡 + Φ𝑖 𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡

− ℓ2
𝑡 + 𝑔𝑡 ⋅ 𝑔𝑡 = 0

19.1.21 Type II Firm

A firm of type II acquires capital via investment and then rents stocks of capital to the 𝑐, 𝑖-producing type I firm.
A type II firm is a price taker facing the vector 𝑣0 and the stochastic processes {𝑟0

𝑡 , 𝑞0
𝑡 }.

The firm chooses 𝑘−1 and stochastic processes for {𝑘𝑡, 𝑖𝑡}∞
𝑡=0 to maximize

𝐸
∞

∑
𝑡=0

𝛽𝑡(𝑟0
𝑡 ⋅ 𝑘𝑡−1 − 𝑞0

𝑡 ⋅ 𝑖𝑡) ∣ 𝐽0 − 𝑣0 ⋅ 𝑘−1

subject to

𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡

370 Chapter 19. Recursive Models of Dynamic Linear Economies



Dynamic Linear Economies

19.1.22 Competitive Equilibrium: Definition

We can now state the following.
Definition: A competitive equilibrium is a price system [𝑣0, {𝑝0

𝑡 , 𝑤0
𝑡 , 𝛼0

𝑡 , 𝑞0
𝑡 , 𝑟0

𝑡 }∞
𝑡=0] and an allocation

{𝑐𝑡, 𝑖𝑡, 𝑘𝑡, ℎ𝑡, 𝑔𝑡, 𝑑𝑡}∞
𝑡=0 that satisfy the following conditions:

• Each component of the price system and the allocation resides in the space 𝐿2
0.

• Given the price system and given ℎ−1, 𝑘−1, the allocation solves the representative household’s problem and the
problems of the two types of firms.

Versions of the two classical welfare theorems prevail under our assumptions.
We exploit that fact in our algorithm for computing a competitive equilibrium.
Step 1: Solve the planning problem by using dynamic programming.
The allocation (i.e., quantities) that solve the planning problem are the competitive equilibrium quantities.
Step 2: use the following formulas to compute the equilibrium price system

𝑝0
𝑡 = [Π′𝑀𝑠

𝑡 + Θ′
ℎ𝑀ℎ

𝑡 ]/𝜇𝑤
0 = 𝑀𝑐

𝑡 /𝜇𝑤
0

𝑤0
𝑡 =∣ 𝑆𝑔𝑥𝑡 ∣ /𝜇𝑤

0

𝑟0
𝑡 = Γ′𝑀𝑑

𝑡 /𝜇𝑤
0

𝑞0
𝑡 = Θ′

𝑘𝑀𝑘
𝑡 /𝜇𝑤

0 = 𝑀 𝑖
𝑡 /𝜇𝑤

0

𝛼0
𝑡 = 𝑀𝑑

𝑡 /𝜇𝑤
0

𝑣0 = Γ′𝑀𝑑
0 /𝜇𝑤

0 + Δ′
𝑘𝑀𝑘

0 /𝜇𝑤
0

Verification: With this price system, values can be assigned to the Lagrange multipliers for each of our three classes of
agents that cause all first-order necessary conditions to be satisfied at these prices and at the quantities associated with the
optimum of the planning problem.

19.1.23 Asset pricing

An important use of an equilibrium pricing system is to do asset pricing.
Thus, imagine that we are presented a dividend stream: {𝑦𝑡} ∈ 𝐿2

0 and want to compute the value of a perpetual claim
to this stream.
To value this asset we simply take price times quantity and add to get an asset value: 𝑎0 = 𝐸 ∑∞

𝑡=0 𝛽𝑡 𝑝0
𝑡 ⋅ 𝑦𝑡 ∣ 𝐽0.

To compute 𝑎𝑜 we proceed as follows.
We let

𝑦𝑡 = 𝑈𝑎 𝑥𝑡

𝑎0 = 𝐸
∞

∑
𝑡=0

𝛽𝑡 𝑥′
𝑡 𝑍𝑎𝑥𝑡 ∣ 𝐽0

𝑍𝑎 = 𝑈 ′
𝑎𝑀𝑐/𝜇𝑤

0

We have the following convenient formulas:

𝑎0 = 𝑥′
0 𝜇𝑎 𝑥0 + 𝜎𝑎
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𝜇𝑎 =
∞

∑
𝜏=0

𝛽𝜏 (𝐴𝑜′)𝜏 𝑍𝑎 𝐴𝑜𝜏

𝜎𝑎 = 𝛽
1 − 𝛽 trace(𝑍𝑎

∞
∑
𝜏=0

𝛽𝜏 (𝐴𝑜)𝜏 𝐶𝐶′(𝐴𝑜′)𝜏)

19.1.24 Re-Opening Markets

We have assumed that all trading occurs once-and-for-all at time 𝑡 = 0.
If we were to re-open markets at some time 𝑡 > 0 at time 𝑡 wealth levels implicitly defined by time 0 trades, we would
obtain the same equilibrium allocation (i.e., quantities) and the following time 𝑡 price system

𝐿2
𝑡 = [{𝑦𝑠}∞

𝑠=𝑡 ∶ 𝑦𝑠 is a random variable in 𝐽𝑠 for 𝑠 ≥ 𝑡

and 𝐸
∞

∑
𝑠=𝑡

𝛽𝑠−𝑡 𝑦2
𝑠 ∣ 𝐽𝑡 < +∞].

𝑝𝑡
𝑠 = 𝑀𝑐𝑥𝑠/[ ̄𝑒𝑗𝑀𝑐𝑥𝑡], 𝑠 ≥ 𝑡

𝑤𝑡
𝑠 =∣ 𝑆𝑔𝑥𝑠|/[ ̄𝑒𝑗𝑀𝑐𝑥𝑡], 𝑠 ≥ 𝑡

𝑟𝑡
𝑠 = Γ′𝑀𝑑𝑥𝑠/[ ̄𝑒𝑗𝑀𝑐𝑥𝑡], 𝑠 ≥ 𝑡

𝑞𝑡
𝑠 = 𝑀𝑖𝑥𝑠/[ ̄𝑒𝑗 𝑀𝑐𝑥𝑡], 𝑠 ≥ 𝑡

𝛼𝑡
𝑠 = 𝑀𝑑𝑥𝑠/[ ̄𝑒𝑗 𝑀𝑐𝑥𝑡], 𝑠 ≥ 𝑡

𝑣𝑡 = [Γ′𝑀𝑑 + Δ′
𝑘𝑀𝑘]𝑥𝑡/ [ ̄𝑒𝑗 𝑀𝑐𝑥𝑡]

19.2 Econometrics

Up to now, we have described how to solve the direct problem that maps model parameters into an (equilibrium) stochas-
tic process of prices and quantities.
Recall the inverse problem of inferring model parameters from a single realization of a time series of some of the prices
and quantities.
Another name for the inverse problem is econometrics.
An advantage of the [Hansen and Sargent, 2013] structure is that it comes with a self-contained theory of econometrics.
It is really just a tale of two state-space representations.
Here they are:
Original State-Space Representation:

𝑥𝑡+1 = 𝐴𝑜𝑥𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝐺𝑥𝑡 + 𝑣𝑡

where 𝑣𝑡 is a martingale difference sequence of measurement errors that satisfies 𝐸𝑣𝑡𝑣′
𝑡 = 𝑅, 𝐸𝑤𝑡+1𝑣′

𝑠 = 0 for all
𝑡 + 1 ≥ 𝑠 and

𝑥0 ∼ 𝒩( ̂𝑥0, Σ0)
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Innovations Representation:

̂𝑥𝑡+1 = 𝐴𝑜 ̂𝑥𝑡 + 𝐾𝑡𝑎𝑡
𝑦𝑡 = 𝐺 ̂𝑥𝑡 + 𝑎𝑡,

where 𝑎𝑡 = 𝑦𝑡 − 𝐸[𝑦𝑡|𝑦𝑡−1], 𝐸𝑎𝑡𝑎′
𝑡 ≡ Ω𝑡 = 𝐺Σ𝑡𝐺′ + 𝑅.

Compare numbers of shocks in the two representations:
• 𝑛𝑤 + 𝑛𝑦 versus 𝑛𝑦

Compare spaces spanned
• 𝐻(𝑦𝑡) ⊂ 𝐻(𝑤𝑡, 𝑣𝑡)
• 𝐻(𝑦𝑡) = 𝐻(𝑎𝑡)

Kalman Filter:.
Kalman gain:

𝐾𝑡 = 𝐴𝑜Σ𝑡𝐺′(𝐺Σ𝑡𝐺′ + 𝑅)−1

Riccati Difference Equation:

Σ𝑡+1 = 𝐴𝑜Σ𝑡𝐴𝑜′ + 𝐶𝐶′

− 𝐴𝑜Σ𝑡𝐺′(𝐺Σ𝑡𝐺′ + 𝑅)−1𝐺Σ𝑡𝐴𝑜′

Innovations Representation as Whitener
Whitening Filter:

𝑎𝑡 = 𝑦𝑡 − 𝐺 ̂𝑥𝑡
̂𝑥𝑡+1 = 𝐴𝑜 ̂𝑥𝑡 + 𝐾𝑡𝑎𝑡

can be used recursively to construct a record of innovations {𝑎𝑡}𝑇
𝑡=0 from an ( ̂𝑥0, Σ0) and a record of observations

{𝑦𝑡}𝑇
𝑡=0.

Limiting Time-Invariant Innovations Representation

Σ = 𝐴𝑜Σ𝐴𝑜′ + 𝐶𝐶′

− 𝐴𝑜Σ𝐺′(𝐺Σ𝐺′ + 𝑅)−1𝐺Σ𝐴𝑜′

𝐾 = 𝐴𝑜Σ𝑡𝐺′(𝐺Σ𝐺′ + 𝑅)−1

̂𝑥𝑡+1 = 𝐴𝑜 ̂𝑥𝑡 + 𝐾𝑎𝑡
𝑦𝑡 = 𝐺 ̂𝑥𝑡 + 𝑎𝑡

where 𝐸𝑎𝑡𝑎′
𝑡 ≡ Ω = 𝐺Σ𝐺′ + 𝑅.

19.2.1 Factorization of Likelihood Function

Sample of observations {𝑦𝑠}𝑇
𝑠=0 on a (𝑛𝑦 × 1) vector.

𝑓(𝑦𝑇 , 𝑦𝑇 −1, … , 𝑦0) = 𝑓𝑇 (𝑦𝑇 |𝑦𝑇 −1, … , 𝑦0)𝑓𝑇 −1(𝑦𝑇 −1|𝑦𝑇 −2, … , 𝑦0) ⋯ 𝑓1(𝑦1|𝑦0)𝑓0(𝑦0)
= 𝑔𝑇 (𝑎𝑇 )𝑔𝑇 −1(𝑎𝑇 −1) … 𝑔1(𝑎1)𝑓0(𝑦0).

Gaussian Log-Likelihood:

−.5
𝑇

∑
𝑡=0

{𝑛𝑦 ln(2𝜋) + ln |Ω𝑡| + 𝑎′
𝑡Ω−1

𝑡 𝑎𝑡}

19.2. Econometrics 373



Dynamic Linear Economies

19.2.2 Covariance Generating Functions

Autocovariance: 𝐶𝑥(𝜏) = 𝐸𝑥𝑡𝑥′
𝑡−𝜏 .

Generating Function: 𝑆𝑥(𝑧) = ∑∞
𝜏=−∞ 𝐶𝑥(𝜏)𝑧𝜏 , 𝑧 ∈ 𝐶.

19.2.3 Spectral Factorization Identity

Original state-space representation has too many shocks and implies:

𝑆𝑦(𝑧) = 𝐺(𝑧𝐼 − 𝐴𝑜)−1𝐶𝐶′(𝑧−1𝐼 − (𝐴𝑜)′)−1𝐺′ + 𝑅

Innovations representation has as many shocks as dimension of 𝑦𝑡 and implies

𝑆𝑦(𝑧) = [𝐺(𝑧𝐼 − 𝐴𝑜)−1𝐾 + 𝐼][𝐺Σ𝐺′ + 𝑅][𝐾′(𝑧−1𝐼 − 𝐴𝑜′)−1𝐺′ + 𝐼]

Equating these two leads to:

𝐺(𝑧𝐼 − 𝐴𝑜)−1𝐶𝐶′(𝑧−1𝐼 − 𝐴𝑜′)−1𝐺′ + 𝑅 =
[𝐺(𝑧𝐼 − 𝐴𝑜)−1𝐾 + 𝐼][𝐺Σ𝐺′ + 𝑅][𝐾′(𝑧−1𝐼 − 𝐴𝑜′)−1𝐺′ + 𝐼].

Key Insight: The zeros of the polynomial det[𝐺(𝑧𝐼 − 𝐴𝑜)−1𝐾 + 𝐼] all lie inside the unit circle, which means that 𝑎𝑡
lies in the space spanned by square summable linear combinations of 𝑦𝑡.

𝐻(𝑎𝑡) = 𝐻(𝑦𝑡)

Key Property: Invertibility

19.2.4 Wold and Vector Autoregressive Representations

Let’s start with some lag operator arithmetic.
The lag operator 𝐿 and the inverse lag operator 𝐿−1 each map an infinite sequence into an infinite sequence according to
the transformation rules

𝐿𝑥𝑡 ≡ 𝑥𝑡−1

𝐿−1𝑥𝑡 ≡ 𝑥𝑡+1

AWold moving average representation for {𝑦𝑡} is

𝑦𝑡 = [𝐺(𝐼 − 𝐴𝑜𝐿)−1𝐾𝐿 + 𝐼]𝑎𝑡

Applying the inverse of the operator on the right side and using

[𝐺(𝐼 − 𝐴𝑜𝐿)−1𝐾𝐿 + 𝐼]−1 = 𝐼 − 𝐺[𝐼 − (𝐴𝑜 − 𝐾𝐺)𝐿]−1𝐾𝐿

gives the vector autoregressive representation

𝑦𝑡 =
∞

∑
𝑗=1

𝐺(𝐴𝑜 − 𝐾𝐺)𝑗−1𝐾𝑦𝑡−𝑗 + 𝑎𝑡
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19.3 Dynamic Demand Curves and Canonical Household Technolo-
gies

19.3.1 Canonical Household Technologies

ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡
𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡
𝑏𝑡 = 𝑈𝑏𝑧𝑡

Definition: A household service technology (Δℎ, Θℎ, Π, Λ, 𝑈𝑏) is said to be canonical if
• Π is nonsingular, and
• the absolute values of the eigenvalues of (Δℎ − ΘℎΠ−1Λ) are strictly less than 1/√𝛽.

Key invertibility property: A canonical household service technology maps a service process {𝑠𝑡} in 𝐿2
0 into a corre-

sponding consumption process {𝑐𝑡} for which the implied household capital stock process {ℎ𝑡} is also in 𝐿2
0.

An inverse household technology:

𝑐𝑡 = −Π−1Λℎ𝑡−1 + Π−1𝑠𝑡
ℎ𝑡 = (Δℎ − ΘℎΠ−1Λ)ℎ𝑡−1 + ΘℎΠ−1𝑠𝑡

The restriction on the eigenvalues of the matrix (Δℎ − ΘℎΠ−1Λ) keeps the household capital stock {ℎ𝑡} in 𝐿2
0.

19.3.2 Dynamic Demand Functions

𝜌0
𝑡 ≡ Π−1′[𝑝0

𝑡 − Θ′
ℎ𝐸𝑡

∞
∑
𝜏=1

𝛽𝜏(Δ′
ℎ − Λ′Π−1′Θ′

ℎ)𝜏−1Λ′Π−1′𝑝0
𝑡+𝜏]

𝑠𝑖,𝑡 = Λℎ𝑖,𝑡−1
ℎ𝑖,𝑡 = Δℎℎ𝑖,𝑡−1

where ℎ𝑖,−1 = ℎ−1.

𝑊0 = 𝐸0
∞

∑
𝑡=0

𝛽𝑡(𝑤0
𝑡 ℓ𝑡 + 𝛼0

𝑡 ⋅ 𝑑𝑡) + 𝑣0 ⋅ 𝑘−1

𝜇𝑤
0 = 𝐸0 ∑∞

𝑡=0 𝛽𝑡𝜌0
𝑡 ⋅ (𝑏𝑡 − 𝑠𝑖,𝑡) − 𝑊0

𝐸0 ∑∞
𝑡=0 𝛽𝑡𝜌0

𝑡 ⋅ 𝜌0
𝑡

𝑐𝑡 = −Π−1Λℎ𝑡−1 + Π−1𝑏𝑡 − Π−1𝜇𝑤
0 𝐸𝑡{Π′ −1 − Π′ −1Θ′

ℎ
[𝐼 − (Δ′

ℎ − Λ′Π′ −1Θ′
ℎ)𝛽𝐿−1]−1Λ′Π′−1𝛽𝐿−1}𝑝0

𝑡
ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡

This system expresses consumption demands at date 𝑡 as functions of: (i) time-𝑡 conditional expectations of future scaled
Arrow-Debreu prices {𝑝0

𝑡+𝑠}∞
𝑠=0; (ii) the stochastic process for the household’s endowment {𝑑𝑡} and preference shock

{𝑏𝑡}, as mediated through the multiplier 𝜇𝑤
0 and wealth 𝑊0; and (iii) past values of consumption, as mediated through

the state variable ℎ𝑡−1.
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19.4 Gorman Aggregation and Engel Curves

We shall explore how the dynamic demand schedule for consumption goods opens up the possibility of satisfyingGorman’s
(1953) conditions for aggregation in a heterogeneous consumer model.
The first equation of our demand system is an Engel curve for consumption that is linear in the marginal utility 𝜇2

0 of
individual wealth with a coefficient on 𝜇𝑤

0 that depends only on prices.
The multiplier 𝜇𝑤

0 depends on wealth in an affine relationship, so that consumption is linear in wealth.
In a model with multiple consumers who have the same household technologies (Δℎ, Θℎ, Λ, Π) but possibly different
preference shock processes and initial values of household capital stocks, the coefficient on the marginal utility of wealth
is the same for all consumers.
Gorman showed that when Engel curves satisfy this property, there exists a unique community or aggregate preference
ordering over aggregate consumption that is independent of the distribution of wealth.

19.4.1 Re-Opened Markets

𝜌𝑡
𝑡 ≡ Π−1′[𝑝𝑡

𝑡 − Θ′
ℎ𝐸𝑡

∞
∑
𝜏=1

𝛽𝜏(Δ′
ℎ − Λ′Π−1′Θ′

ℎ)𝜏−1Λ′Π−1′𝑝𝑡
𝑡+𝜏]

𝑠𝑖,𝑡 = Λℎ𝑖,𝑡−1
ℎ𝑖,𝑡 = Δℎℎ𝑖,𝑡−1,

where now ℎ𝑖,𝑡−1 = ℎ𝑡−1. Define time 𝑡 wealth 𝑊𝑡

𝑊𝑡 = 𝐸𝑡
∞

∑
𝑗=0

𝛽𝑗(𝑤𝑡
𝑡+𝑗ℓ𝑡+𝑗 + 𝛼𝑡

𝑡+𝑗 ⋅ 𝑑𝑡+𝑗) + 𝑣𝑡 ⋅ 𝑘𝑡−1

𝜇𝑤
𝑡 =

𝐸𝑡 ∑∞
𝑗=0 𝛽𝑗𝜌𝑡

𝑡+𝑗 ⋅ (𝑏𝑡+𝑗 − 𝑠𝑖,𝑡+𝑗) − 𝑊𝑡

𝐸𝑡 ∑∞
𝑡=0 𝛽𝑗𝜌𝑡

𝑡+𝑗 ⋅ 𝜌𝑡
𝑡+𝑗

𝑐𝑡 = −Π−1Λℎ𝑡−1 + Π−1𝑏𝑡 − Π−1𝜇𝑤
𝑡 𝐸𝑡{Π′ −1 − Π′ −1Θ′

ℎ
[𝐼 − (Δ′

ℎ − Λ′Π′ −1Θ′
ℎ)𝛽𝐿−1]−1Λ′Π′−1𝛽𝐿−1}𝑝𝑡

𝑡
ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡

19.4.2 Dynamic Demand

Define a time 𝑡 continuation of a sequence {𝑧𝑡}∞
𝑡=0 as the sequence {𝑧𝜏}∞

𝜏=𝑡. The demand system indicates that the time
𝑡 vector of demands for 𝑐𝑡 is influenced by:
Through the multiplier 𝜇𝑤

𝑡 , the time 𝑡 continuation of the preference shock process {𝑏𝑡} and the time 𝑡 continuation of
{𝑠𝑖,𝑡}.
The time 𝑡 − 1 level of household durables ℎ𝑡−1.
Everything that affects the household’s time 𝑡 wealth, including its stock of physical capital 𝑘𝑡−1 and its value 𝑣𝑡, the
time 𝑡 continuation of the factor prices {𝑤𝑡, 𝛼𝑡}, the household’s continuation endowment process, and the household’s
continuation plan for {ℓ𝑡}.
The time 𝑡 continuation of the vector of prices {𝑝𝑡

𝑡}.
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19.4.3 Attaining a Canonical Household Technology

Apply the following version of a factorization identity:

[Π + 𝛽1/2𝐿−1Λ(𝐼 − 𝛽1/2𝐿−1Δℎ)−1Θℎ]′[Π + 𝛽1/2𝐿Λ(𝐼 − 𝛽1/2𝐿Δℎ)−1Θℎ]
= [Π̂ + 𝛽1/2𝐿−1Λ̂(𝐼 − 𝛽1/2𝐿−1Δℎ)−1Θℎ]′[Π̂ + 𝛽1/2𝐿Λ̂(𝐼 − 𝛽1/2𝐿Δℎ)−1Θℎ]

The factorization identity guarantees that the [Λ̂, Π̂] representation satisfies both requirements for a canonical represen-
tation.

19.5 Partial Equilibrium

Now we’ll provide quick overviews of examples of economies that fit within our framework
We provide details for a number of these examples in subsequent lectures

1. Growth in Dynamic Linear Economies
2. Lucas Asset Pricing using DLE
3. IRFs in Hall Model
4. Permanent Income Using the DLE class
5. Rosen schooling model
6. Cattle cycles
7. Shock Non Invertibility

We’ll start with an example of a partial equilibrium in which we posit demand and supply curves
Suppose that we want to capture the dynamic demand curve:

𝑐𝑡 = −Π−1Λℎ𝑡−1 + Π−1𝑏𝑡 − Π−1𝜇𝑤
0 𝐸𝑡{Π′ −1 − Π′ −1Θ′

ℎ
[𝐼 − (Δ′

ℎ − Λ′Π′ −1Θ′
ℎ)𝛽𝐿−1]−1Λ′Π′−1𝛽𝐿−1}𝑝𝑡

ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡

From material described earlier in this lecture, we know how to reverse engineer preferences that generate this demand
system

• note how the demand equations are cast in terms of the matrices in our standard preference representation
Now let’s turn to supply.
A representative firm takes as given and beyond its control the stochastic process {𝑝𝑡}∞

𝑡=0.
The firm sells its output 𝑐𝑡 in a competitive market each period.
Only spot markets convene at each date 𝑡 ≥ 0.
The firm also faces an exogenous process of cost disturbances 𝑑𝑡.
The firm chooses stochastic processes {𝑐𝑡, 𝑔𝑡, 𝑖𝑡, 𝑘𝑡}∞

𝑡=0 to maximize

𝐸0
∞

∑
𝑡=0

𝛽𝑡{𝑝𝑡 ⋅ 𝑐𝑡 − 𝑔𝑡 ⋅ 𝑔𝑡/2}

subject to given 𝑘−1 and

Φ𝑐𝑐𝑡 + Φ𝑖𝑖𝑡 + Φ𝑔𝑔𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡
𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡.
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19.6 Equilibrium Investment Under Uncertainty

A representative firm maximizes

𝐸
∞

∑
𝑡=0

𝛽𝑡{𝑝𝑡𝑐𝑡 − 𝑔2
𝑡 /2}

subject to the technology

𝑐𝑡 = 𝛾𝑘𝑡−1
𝑘𝑡 = 𝛿𝑘𝑘𝑡−1 + 𝑖𝑡
𝑔𝑡 = 𝑓1𝑖𝑡 + 𝑓2𝑑𝑡

where 𝑑𝑡 is a cost shifter, 𝛾 > 0, and 𝑓1 > 0 is a cost parameter and 𝑓2 = 1. Demand is governed by

𝑝𝑡 = 𝛼0 − 𝛼1𝑐𝑡 + 𝑢𝑡

where 𝑢𝑡 is a demand shifter with mean zero and 𝛼0, 𝛼1 are positive parameters.
Assume that 𝑢𝑡, 𝑑𝑡 are uncorrelated first-order autoregressive processes.

19.7 A Rosen-Topel Housing Model

𝑅𝑡 = 𝑏𝑡 + 𝛼ℎ𝑡

𝑝𝑡 = 𝐸𝑡
∞

∑
𝜏=0

(𝛽𝛿ℎ)𝜏𝑅𝑡+𝜏

where ℎ𝑡 is the stock of housing at time 𝑡 𝑅𝑡 is the rental rate for housing, 𝑝𝑡 is the price of new houses, and 𝑏𝑡 is a
demand shifter; 𝛼 < 0 is a demand parameter, and 𝛿ℎ is a depreciation factor for houses.
We cast this demand specification within our class of models by letting the stock of houses ℎ𝑡 evolve according to

ℎ𝑡 = 𝛿ℎℎ𝑡−1 + 𝑐𝑡, 𝛿ℎ ∈ (0, 1)

where 𝑐𝑡 is the rate of production of new houses.
Houses produce services 𝑠𝑡 according to 𝑠𝑡 = 𝜆̄ℎ𝑡 or 𝑠𝑡 = 𝜆ℎ𝑡−1 + 𝜋𝑐𝑡, where 𝜆 = 𝜆̄𝛿ℎ, 𝜋 = 𝜆̄.
We can take 𝜆̄𝜌0

𝑡 = 𝑅𝑡 as the rental rate on housing at time 𝑡, measured in units of time 𝑡 consumption (housing).
Demand for housing services is

𝑠𝑡 = 𝑏𝑡 − 𝜇0𝜌0
𝑡

where the price of new houses 𝑝𝑡 is related to 𝜌0
𝑡 by 𝜌0

𝑡 = 𝜋−1[𝑝𝑡 − 𝛽𝛿ℎ𝐸𝑡𝑝𝑡+1].

19.8 Cattle Cycles

Rosen, Murphy, and Scheinkman (1994). Let 𝑝𝑡 be the price of freshly slaughtered beef,𝑚𝑡 the feeding cost of preparing
an animal for slaughter, ℎ̃𝑡 the one-period holding cost for amature animal, 𝛾1ℎ̃𝑡 the one-period holding cost for a yearling,
and 𝛾0ℎ̃𝑡 the one-period holding cost for a calf.

The cost processes {ℎ̃𝑡, 𝑚𝑡}∞
𝑡=0 are exogenous, while the stochastic process {𝑝𝑡}∞

𝑡=0 is determined by a rational expec-
tations equilibrium. Let ̃𝑥𝑡 be the breeding stock, and ̃𝑦𝑡 be the total stock of animals.
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The law of motion for cattle stocks is

̃𝑥𝑡 = (1 − 𝛿) ̃𝑥𝑡−1 + 𝑔 ̃𝑥𝑡−3 − 𝑐𝑡

where 𝑐𝑡 is a rate of slaughtering. The total head-count of cattle

̃𝑦𝑡 = ̃𝑥𝑡 + 𝑔 ̃𝑥𝑡−1 + 𝑔 ̃𝑥𝑡−2

is the sum of adults, calves, and yearlings, respectively.
A representative farmer chooses {𝑐𝑡, ̃𝑥𝑡} to maximize

𝐸0
∞

∑
𝑡=0

𝛽𝑡{𝑝𝑡𝑐𝑡 − ℎ̃𝑡 ̃𝑥𝑡 − (𝛾0ℎ̃𝑡)(𝑔 ̃𝑥𝑡−1) − (𝛾1ℎ̃𝑡)(𝑔 ̃𝑥𝑡−2) − 𝑚𝑡𝑐𝑡

− Ψ( ̃𝑥𝑡, ̃𝑥𝑡−1, ̃𝑥𝑡−2, 𝑐𝑡)}
where

Ψ = 𝜓1
2 ̃𝑥2

𝑡 + 𝜓2
2 ̃𝑥2

𝑡−1 + 𝜓3
2 ̃𝑥2

𝑡−2 + 𝜓4
2 𝑐2

𝑡

Demand is governed by

𝑐𝑡 = 𝛼0 − 𝛼1𝑝𝑡 + ̃𝑑𝑡

where 𝛼0 > 0, 𝛼1 > 0, and { ̃𝑑𝑡}∞
𝑡=0 is a stochastic process with mean zero representing a demand shifter.

For more details see Cattle cycles

19.9 Models of Occupational Choice and Pay

We’ll describe the following pair of schooling models that view education as a time-to-build process:
• Rosen schooling model for engineers
• Two-occupation model

19.9.1 Market for Engineers

Ryoo and Rosen’s (2004) [Ryoo and Rosen, 2004] model consists of the following equations:
first, a demand curve for engineers

𝑤𝑡 = −𝛼𝑑𝑁𝑡 + 𝜖1𝑡 , 𝛼𝑑 > 0

second, a time-to-build structure of the education process

𝑁𝑡+𝑘 = 𝛿𝑁𝑁𝑡+𝑘−1 + 𝑛𝑡 , 0 < 𝛿𝑁 < 1

third, a definition of the discounted present value of each new engineering student

𝑣𝑡 = 𝛽𝑘𝐸𝑡
∞

∑
𝑗=0

(𝛽𝛿𝑁)𝑗𝑤𝑡+𝑘+𝑗;

and fourth, a supply curve of new students driven by 𝑣𝑡

𝑛𝑡 = 𝛼𝑠𝑣𝑡 + 𝜖2𝑡 , 𝛼𝑠 > 0
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Here {𝜖1𝑡, 𝜖2𝑡} are stochastic processes of labor demand and supply shocks.
Definition: A partial equilibrium is a stochastic process {𝑤𝑡, 𝑁𝑡, 𝑣𝑡, 𝑛𝑡}∞

𝑡=0 satisfying these four equations, and initial
conditions 𝑁−1, 𝑛−𝑠, 𝑠 = 1, … , −𝑘.
We sweep the time-to-build structure and the demand for engineers into the household technology and putting the supply
of new engineers into the technology for producing goods.

𝑠𝑡 = [𝜆1 0 … 0]
⎡
⎢⎢
⎣

ℎ1𝑡−1
ℎ2𝑡−1

⋮
ℎ𝑘+1,𝑡−1

⎤
⎥⎥
⎦

+ 0 ⋅ 𝑐𝑡

⎡
⎢
⎢
⎢
⎣

ℎ1𝑡
ℎ2𝑡
⋮

ℎ𝑘,𝑡
ℎ𝑘+1,𝑡

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝛿𝑁 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ ⋯ 0 1
0 0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

ℎ1𝑡−1
ℎ2𝑡−1

⋮
ℎ𝑘,𝑡−1

ℎ𝑘+1,𝑡−1

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

0
0
⋮
0
1

⎤
⎥
⎥
⎥
⎦

𝑐𝑡

This specification sets Rosen’s𝑁𝑡 = ℎ1𝑡−1, 𝑛𝑡 = 𝑐𝑡, ℎ𝜏+1,𝑡−1 = 𝑛𝑡−𝜏 , 𝜏 = 1, … , 𝑘, and uses the home-produced service
to capture the demand for labor. Here 𝜆1 embodies Rosen’s demand parameter 𝛼𝑑.

• The supply of new workers becomes our consumption.
• The dynamic demand curve becomes Rosen’s dynamic supply curve for new workers.

Remark: This has an Imai-Keane flavor.
For more details and Python code see Rosen schooling model.

19.9.2 Skilled and Unskilled Workers

First, a demand curve for labor

[𝑤𝑢𝑡
𝑤𝑠𝑡

] = 𝛼𝑑 [𝑁𝑢𝑡
𝑁𝑠𝑡

] + 𝜖1𝑡

where 𝛼𝑑 is a (2 × 2) matrix of demand parameters and 𝜖1𝑡 is a vector of demand shifters second, time-to-train specifi-
cations for skilled and unskilled labor, respectively:

𝑁𝑠𝑡+𝑘 = 𝛿𝑁𝑁𝑠𝑡+𝑘−1 + 𝑛𝑠𝑡
𝑁𝑢𝑡 = 𝛿𝑁𝑁𝑢𝑡−1 + 𝑛𝑢𝑡;

where 𝑁𝑠𝑡, 𝑁𝑢𝑡 are stocks of the two types of labor, and 𝑛𝑠𝑡, 𝑛𝑢𝑡 are entry rates into the two occupations.
third, definitions of discounted present values of new entrants to the skilled and unskilled occupations, respectively:

𝑣𝑠𝑡 = 𝐸𝑡𝛽𝑘
∞

∑
𝑗=0

(𝛽𝛿𝑁)𝑗𝑤𝑠𝑡+𝑘+𝑗

𝑣𝑢𝑡 = 𝐸𝑡
∞

∑
𝑗=0

(𝛽𝛿𝑁)𝑗𝑤𝑢𝑡+𝑗

where 𝑤𝑢𝑡, 𝑤𝑠𝑡 are wage rates for the two occupations; and fourth, supply curves for new entrants:

[𝑛𝑠𝑡
𝑛𝑢𝑡

] = 𝛼𝑠 [𝑣𝑢𝑡
𝑣𝑠𝑡

] + 𝜖2𝑡

Short Cut
As an alternative, Siow simply used the equalizing differences condition

𝑣𝑢𝑡 = 𝑣𝑠𝑡
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19.10 Permanent Income Models

We’ll describe a class of permanent income models that feature
• Many consumption goods and services
• A single capital good with 𝑅𝛽 = 1
• The physical production technology

𝜙𝑐 ⋅ 𝑐𝑡 + 𝑖𝑡 = 𝛾𝑘𝑡−1 + 𝑒𝑡
𝑘𝑡 = 𝑘𝑡−1 + 𝑖𝑡

𝜙𝑖𝑖𝑡 − 𝑔𝑡 = 0
Implication One:
Equality of Present Values of Moving Average Coefficients of 𝑐 and 𝑒

𝑘𝑡−1 = 𝛽
∞

∑
𝑗=0

𝛽𝑗(𝜙𝑐 ⋅ 𝑐𝑡+𝑗 − 𝑒𝑡+𝑗) ⇒

𝑘𝑡−1 = 𝛽
∞

∑
𝑗=0

𝛽𝑗𝐸(𝜙𝑐 ⋅ 𝑐𝑡+𝑗 − 𝑒𝑡+𝑗)|𝐽𝑡 ⇒

∞
∑
𝑗=0

𝛽𝑗(𝜙𝑐)′𝜒𝑗 =
∞

∑
𝑗=0

𝛽𝑗𝜖𝑗

where 𝜒𝑗𝑤𝑡 is the response of 𝑐𝑡+𝑗 to 𝑤𝑡 and 𝜖𝑗𝑤𝑡 is the response of endowment 𝑒𝑡+𝑗 to 𝑤𝑡:
Implication Two:
Martingales

ℳ𝑘
𝑡 = 𝐸(ℳ𝑘

𝑡+1|𝐽𝑡)
ℳ𝑒

𝑡 = 𝐸(ℳ𝑒
𝑡+1|𝐽𝑡)

and

ℳ𝑐
𝑡 = (Φ𝑐)′ℳ𝑑

𝑡 = 𝜙𝑐𝑀𝑒
𝑡

For more details see Permanent Income Using the DLE class
Testing Permanent Income Models:
We have two types of implications of permanent income models:

• Equality of present values of moving average coefficients.
• Martingale ℳ𝑘

𝑡 .
These have been tested in work by Hansen, Sargent, and Roberts (1991) [Sargent et al., 1991] and by Attanasio and
Pavoni (2011) [Attanasio and Pavoni, 2011].
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19.11 Gorman Heterogeneous Households

We now assume that there is a finite number of households, each with its own household technology and preferences over
consumption services.
Household 𝑗 orders preferences over consumption processes according to

− (1
2) 𝐸

∞
∑
𝑡=0

𝛽𝑡 [(𝑠𝑗𝑡 − 𝑏𝑗𝑡) ⋅ (𝑠𝑗𝑡 − 𝑏𝑗𝑡) + ℓ2
𝑗𝑡] ∣ 𝐽0

𝑠𝑗𝑡 = Λ ℎ𝑗,𝑡−1 + Π 𝑐𝑗𝑡

ℎ𝑗𝑡 = Δℎ ℎ𝑗,𝑡−1 + Θℎ 𝑐𝑗𝑡

and ℎ𝑗,−1 is given

𝑏𝑗𝑡 = 𝑈𝑏𝑗𝑧𝑡

𝐸
∞

∑
𝑡=0

𝛽𝑡 𝑝0
𝑡 ⋅ 𝑐𝑗𝑡 ∣ 𝐽0 = 𝐸

∞
∑
𝑡=0

𝛽𝑡 (𝑤0
𝑡 ℓ𝑗𝑡 + 𝛼0

𝑡 ⋅ 𝑑𝑗𝑡) ∣ 𝐽0 + 𝑣0 ⋅ 𝑘𝑗,−1,

where 𝑘𝑗,−1 is given. The 𝑗th consumer owns an endowment process 𝑑𝑗𝑡, governed by the stochastic process 𝑑𝑗𝑡 = 𝑈𝑑𝑗 𝑧𝑡.
We refer to this as a setting with Gorman heterogeneous households.
This specification confines heterogeneity among consumers to:

• differences in the preference processes {𝑏𝑗𝑡}, represented by different selections of 𝑈𝑏𝑗

• differences in the endowment processes {𝑑𝑗𝑡}, represented by different selections of 𝑈𝑑𝑗

• differences in ℎ𝑗,−1 and
• differences in 𝑘𝑗,−1

The matrices Λ, Π, Δℎ, Θℎ do not depend on 𝑗.
This makes everybody’s demand system have the form described earlier, with different 𝜇𝑤

𝑗0’s (reflecting different wealth
levels) and different 𝑏𝑗𝑡 preference shock processes and initial conditions for household capital stocks.
Punchline: there exists a representative consumer.
We can use the representative consumer to compute a competitive equilibrium aggregate allocation and price system.
With the equilibrium aggregate allocation and price system in hand, we can then compute allocations to each household.
Computing Allocations to Individuals:
Set

ℓ𝑗𝑡 = (𝜇𝑤
0𝑗/𝜇𝑤

0𝑎)ℓ𝑎𝑡

Then solve the following equation for 𝜇𝑤
0𝑗:

𝜇𝑤
0𝑗𝐸0

∞
∑
𝑡=0

𝛽𝑡{𝜌0
𝑡 ⋅ 𝜌0

𝑡 + (𝑤0
𝑡 /𝜇𝑤

0𝑎)ℓ𝑎𝑡} = 𝐸0
∞

∑
𝑡=0

𝛽𝑡{𝜌0
𝑡 ⋅ (𝑏𝑗𝑡 − 𝑠𝑖

𝑗𝑡) − 𝛼0
𝑡 ⋅ 𝑑𝑗𝑡} − 𝑣0𝑘𝑗,−1

𝑠𝑗𝑡 − 𝑏𝑗𝑡 = 𝜇𝑤
0𝑗𝜌0

𝑡

𝑐𝑗𝑡 = −Π−1Λℎ𝑗,𝑡−1 + Π−1𝑠𝑗𝑡
ℎ𝑗𝑡 = (Δℎ − ΘℎΠ−1Λ)ℎ𝑗,𝑡−1 + Π−1Θℎ𝑠𝑗𝑡

Here ℎ𝑗,−1 given.
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19.12 Non-Gorman Heterogeneous Households

We now describe a less tractable type of heterogeneity across households that we dub Non-Gorman heterogeneity.
Here is the specification:
Preferences and Household Technologies:

−1
2𝐸

∞
∑
𝑡=0

𝛽𝑡 [(𝑠𝑖𝑡 − 𝑏𝑖𝑡) ⋅ (𝑠𝑖𝑡 − 𝑏𝑖𝑡) + ℓ2
𝑖𝑡] ∣ 𝐽0

𝑠𝑖𝑡 = Λ𝑖ℎ𝑖𝑡−1 + Π𝑖 𝑐𝑖𝑡
ℎ𝑖𝑡 = Δℎ𝑖

ℎ𝑖𝑡−1 + Θℎ𝑖
𝑐𝑖𝑡 , 𝑖 = 1, 2.

𝑏𝑖𝑡 = 𝑈𝑏𝑖𝑧𝑡

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1

Production Technology

Φ𝑐(𝑐1𝑡 + 𝑐2𝑡) + Φ𝑔𝑔𝑡 + Φ𝑖𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑1𝑡 + 𝑑2𝑡

𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡

𝑔𝑡 ⋅ 𝑔𝑡 = ℓ2
𝑡 , ℓ𝑡 = ℓ1𝑡 + ℓ2𝑡

𝑑𝑖𝑡 = 𝑈𝑑𝑖
𝑧𝑡, 𝑖 = 1, 2

Pareto Problem:

− 1
2 𝜆𝐸0

∞
∑
𝑡=0

𝛽𝑡[(𝑠1𝑡 − 𝑏1𝑡) ⋅ (𝑠1𝑡 − 𝑏1𝑡) + ℓ2
1𝑡]

− 1
2 (1 − 𝜆)𝐸0

∞
∑
𝑡=0

𝛽𝑡[(𝑠2𝑡 − 𝑏2𝑡) ⋅ (𝑠2𝑡 − 𝑏2𝑡) + ℓ2
2𝑡]

Mongrel Aggregation: Static
There is what we call a kind ofmongrel aggregation in this setting.
We first describe the idea within a simple static setting in which there is a single consumer static inverse demand with
implied preferences:

𝑐𝑡 = Π−1𝑏𝑡 − 𝜇0Π−1Π−1′𝑝𝑡

An inverse demand curve is

𝑝𝑡 = 𝜇−1
0 Π′𝑏𝑡 − 𝜇−1

0 Π′Π𝑐𝑡

Integrating the marginal utility vector shows that preferences can be taken to be

(−2𝜇0)−1(Π𝑐𝑡 − 𝑏𝑡) ⋅ (Π𝑐𝑡 − 𝑏𝑡)

Key Insight: Factor the inverse of a ‘covariance matrix’.
Now assume that there are two consumers, 𝑖 = 1, 2, with demand curves

𝑐𝑖𝑡 = Π−1
𝑖 𝑏𝑖𝑡 − 𝜇0𝑖Π−1

𝑖 Π−1′
𝑖 𝑝𝑡
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𝑐1𝑡 + 𝑐2𝑡 = (Π−1
1 𝑏1𝑡 + Π−1

2 𝑏2𝑡) − (𝜇01Π−1
1 Π−1′

1 + 𝜇02Π2Π−1′
2 )𝑝𝑡

Setting 𝑐1𝑡 + 𝑐2𝑡 = 𝑐𝑡 and solving for 𝑝𝑡 gives

𝑝𝑡 = (𝜇01Π−1
1 Π−1′

1 + 𝜇02Π−1
2 Π−1′

2 )−1(Π−1
1 𝑏1𝑡 + Π−1

2 𝑏2𝑡)
− (𝜇01Π−1

1 Π−1′
1 + 𝜇02Π−1

2 Π−1′
2 )−1𝑐𝑡

Punchline: choose Π associated with the aggregate ordering to satisfy

𝜇−1
0 Π′Π = (𝜇01Π−1

1 Π−1′
2 + 𝜇02Π−1

2 Π−1′
2 )−1

Dynamic Analogue:
We now describe how to extend mongrel aggregation to a dynamic setting.
The key comparison is

• Static: factor a covariance matrix-like object
• Dynamic: factor a spectral-density matrix-like object

Programming Problem for Dynamic Mongrel Aggregation:
Our strategy for deducing the mongrel preference ordering over 𝑐𝑡 = 𝑐1𝑡 + 𝑐2𝑡 is to solve the programming problem:
choose {𝑐1𝑡, 𝑐2𝑡} to maximize the criterion

∞
∑
𝑡=0

𝛽𝑡[𝜆(𝑠1𝑡 − 𝑏1𝑡) ⋅ (𝑠1𝑡 − 𝑏1𝑡) + (1 − 𝜆)(𝑠2𝑡 − 𝑏2𝑡) ⋅ (𝑠2𝑡 − 𝑏2𝑡)]

subject to

ℎ𝑗𝑡 = Δℎ𝑗 ℎ𝑗𝑡−1 + Θℎ𝑗 𝑐𝑗𝑡, 𝑗 = 1, 2
𝑠𝑗𝑡 = Δ𝑗ℎ𝑗𝑡−1 + Π𝑗𝑐𝑗𝑡 , 𝑗 = 1, 2

𝑐1𝑡 + 𝑐2𝑡 = 𝑐𝑡

subject to (ℎ1,−1, ℎ2,−1) given and {𝑏1𝑡}, {𝑏2𝑡}, {𝑐𝑡} being known and fixed sequences.
Substituting the {𝑐1𝑡, 𝑐2𝑡} sequences that solve this problem as functions of {𝑏1𝑡, 𝑏2𝑡, 𝑐𝑡} into the objective determines
a mongrel preference ordering over {𝑐𝑡} = {𝑐1𝑡 + 𝑐2𝑡}.
In solving this problem, it is convenient to proceed by using Fourier transforms. For details, please see [Hansen and
Sargent, 2013] where they deploy a
Secret Weapon: Another application of the spectral factorization identity.
Concluding remark: The [Hansen and Sargent, 2013] class of models described in this lecture are all complete markets
models. We have exploited the fact that complete market models are all alike to allow us to define a class that gives the
same name to different things in the spirit of Henri Poincare.
Could we create such a class for incomplete markets models?
That would be nice, but before trying it would be wise to contemplate the remainder of a statement by Robert E. Lucas,
Jr., with which we began this lecture.

“Complete market economies are all alike but each incomplete market economy is incomplete in its own
individual way.” Robert E. Lucas, Jr., (1989)
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CHAPTER

TWENTY

GROWTH IN DYNAMIC LINEAR ECONOMIES

Contents

• Growth in Dynamic Linear Economies
– Common Structure

– A Planning Problem

– Example Economies

This is another member of a suite of lectures that use the quantecon DLE class to instantiate models within the [Hansen
and Sargent, 2013] class of models described in detail in Recursive Models of Dynamic Linear Economies.
In addition to what’s included in Anaconda, this lecture uses the quantecon library.

!pip install --upgrade quantecon

This lecture describes several complete market economies having a common linear-quadratic-Gaussian structure.
Three examples of such economies show how the DLE class can be used to compute equilibria of such economies in
Python and to illustrate how different versions of these economies can or cannot generate sustained growth.
We require the following imports

import numpy as np
import matplotlib.pyplot as plt
from quantecon import DLE

20.1 Common Structure

Our example economies have the following features
• Information flows are governed by an exogenous stochastic process 𝑧𝑡 that follows

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1

where 𝑤𝑡+1 is a martingale difference sequence.
• Preference shocks 𝑏𝑡 and technology shocks 𝑑𝑡 are linear functions of 𝑧𝑡

𝑏𝑡 = 𝑈𝑏𝑧𝑡

𝑑𝑡 = 𝑈𝑑𝑧𝑡
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• Consumption and physical investment goods are produced using the following technology

Φ𝑐𝑐𝑡 + Φ𝑔𝑔𝑡 + Φ𝑖𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡

𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡

𝑔𝑡 ⋅ 𝑔𝑡 = 𝑙2𝑡
where 𝑐𝑡 is a vector of consumption goods, 𝑔𝑡 is a vector of intermediate goods, 𝑖𝑡 is a vector of investment goods,
𝑘𝑡 is a vector of physical capital goods, and 𝑙𝑡 is the amount of labor supplied by the representative household.

• Preferences of a representative household are described by

−1
2𝔼

∞
∑
𝑡=0

𝛽𝑡[(𝑠𝑡 − 𝑏𝑡) ⋅ (𝑠𝑡 − 𝑏𝑡) + 𝑙2𝑡 ], 0 < 𝛽 < 1

𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡

ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡

where 𝑠𝑡 is a vector of consumption services, and ℎ𝑡 is a vector of household capital stocks.
Thus, an instance of this class of economies is described by the matrices

{𝐴22, 𝐶2, 𝑈𝑏, 𝑈𝑑, Φ𝑐, Φ𝑔, Φ𝑖, Γ, Δ𝑘, Θ𝑘, Λ, Π, Δℎ, Θℎ}

and the scalar 𝛽.

20.2 A Planning Problem

The first welfare theorem asserts that a competitive equilibrium allocation solves the following planning problem.
Choose {𝑐𝑡, 𝑠𝑡, 𝑖𝑡, ℎ𝑡, 𝑘𝑡, 𝑔𝑡}∞

𝑡=0 to maximize

−1
2𝔼

∞
∑
𝑡=0

𝛽𝑡[(𝑠𝑡 − 𝑏𝑡) ⋅ (𝑠𝑡 − 𝑏𝑡) + 𝑔𝑡 ⋅ 𝑔𝑡]

subject to the linear constraints

Φ𝑐𝑐𝑡 + Φ𝑔𝑔𝑡 + Φ𝑖𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡

𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡

ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡

𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡

and

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1

𝑏𝑡 = 𝑈𝑏𝑧𝑡

𝑑𝑡 = 𝑈𝑑𝑧𝑡

The DLE class in Python maps this planning problem into a linear-quadratic dynamic programming problem and then
solves it by using QuantEcon’s LQ class.
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(See Section 5.5 of Hansen & Sargent (2013) [Hansen and Sargent, 2013] for a full description of how to map these
economies into an LQ setting, and how to use the solution to the LQ problem to construct the output matrices in order to
simulate the economies)
The state for the LQ problem is

𝑥𝑡 = ⎡⎢
⎣

ℎ𝑡−1
𝑘𝑡−1
𝑧𝑡

⎤⎥
⎦

and the control variable is 𝑢𝑡 = 𝑖𝑡.
Once the LQ problem has been solved, the law of motion for the state is

𝑥𝑡+1 = (𝐴 − 𝐵𝐹)𝑥𝑡 + 𝐶𝑤𝑡+1

where the optimal control law is 𝑢𝑡 = −𝐹𝑥𝑡.
Letting 𝐴𝑜 = 𝐴 − 𝐵𝐹 we write this law of motion as

𝑥𝑡+1 = 𝐴𝑜𝑥𝑡 + 𝐶𝑤𝑡+1

20.3 Example Economies

Each of the example economies shown here will share a number of components. In particular, for each we will consider
preferences of the form

−1
2𝔼

∞
∑
𝑡=0

𝛽𝑡[(𝑠𝑡 − 𝑏𝑡)2 + 𝑙2𝑡 ], 0 < 𝛽 < 1

𝑠𝑡 = 𝜆ℎ𝑡−1 + 𝜋𝑐𝑡

ℎ𝑡 = 𝛿ℎℎ𝑡−1 + 𝜃ℎ𝑐𝑡

𝑏𝑡 = 𝑈𝑏𝑧𝑡

Technology of the form

𝑐𝑡 + 𝑖𝑡 = 𝛾1𝑘𝑡−1 + 𝑑1𝑡

𝑘𝑡 = 𝛿𝑘𝑘𝑡−1 + 𝑖𝑡

𝑔𝑡 = 𝜙1𝑖𝑡 , 𝜙1 > 0

[ 𝑑1𝑡
0 ] = 𝑈𝑑𝑧𝑡

And information of the form

𝑧𝑡+1 = ⎡⎢
⎣

1 0 0
0 0.8 0
0 0 0.5

⎤⎥
⎦

𝑧𝑡 + ⎡⎢
⎣

0 0
1 0
0 1

⎤⎥
⎦

𝑤𝑡+1

𝑈𝑏 = [ 30 0 0 ]

𝑈𝑑 = [ 5 1 0
0 0 0 ]

We shall vary {𝜆, 𝜋, 𝛿ℎ, 𝜃ℎ, 𝛾1, 𝛿𝑘, 𝜙1} and the initial state 𝑥0 across the three economies.
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20.3.1 Example 1: Hall (1978)

First, we set parameters such that consumption follows a random walk. In particular, we set

𝜆 = 0, 𝜋 = 1, 𝛾1 = 0.1, 𝜙1 = 0.00001, 𝛿𝑘 = 0.95, 𝛽 = 1
1.05

(In this economy 𝛿ℎ and 𝜃ℎ are arbitrary as household capital does not enter the equation for consumption services We
set them to values that will become useful in Example 3)
It is worth noting that this choice of parameter values ensures that 𝛽(𝛾1 + 𝛿𝑘) = 1.
For simulations of this economy, we choose an initial condition of

𝑥0 = [ 5 150 1 0 0 ]′

# Parameter Matrices
γ_1 = 0.1
ϕ_1 = 1e-5

ϕ_c, ϕ_g, ϕ_i, γ, δ_k, θ_k = (np.array([[1], [0]]),
np.array([[0], [1]]),
np.array([[1], [-ϕ_1]]),
np.array([[γ_1], [0]]),
np.array([[.95]]),
np.array([[1]]))

β, l_λ, π_h, δ_h, θ_h = (np.array([[1 / 1.05]]),
np.array([[0]]),
np.array([[1]]),
np.array([[.9]]),
np.array([[1]]) - np.array([[.9]]))

a22, c2, ub, ud = (np.array([[1, 0, 0],
[0, 0.8, 0],
[0, 0, 0.5]]),

np.array([[0, 0],
[1, 0],
[0, 1]]),

np.array([[30, 0, 0]]),
np.array([[5, 1, 0],

[0, 0, 0]]))

# Initial condition
x0 = np.array([[5], [150], [1], [0], [0]])

info1 = (a22, c2, ub, ud)
tech1 = (ϕ_c, ϕ_g, ϕ_i, γ, δ_k, θ_k)
pref1 = (β, l_λ, π_h, δ_h, θ_h)

These parameter values are used to define an economy of the DLE class.

econ1 = DLE(info1, tech1, pref1)

We can then simulate the economy for a chosen length of time, from our initial state vector 𝑥0

econ1.compute_sequence(x0, ts_length=300)
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The economy stores the simulated values for each variable. Below we plot consumption and investment

# This is the right panel of Fig 5.7.1 from p.105 of HS2013
plt.plot(econ1.c[0], label='Cons.')
plt.plot(econ1.i[0], label='Inv.')
plt.legend()
plt.show()

Inspection of the plot shows that the sample paths of consumption and investment drift in ways that suggest that each has
or nearly has a random walk or unit root component.
This is confirmed by checking the eigenvalues of 𝐴𝑜

econ1.endo, econ1.exo

(array([0.9, 1. ]), array([1. , 0.8, 0.5]))

The endogenous eigenvalue that appears to be unity reflects the random walk character of consumption in Hall’s model.
• Actually, the largest endogenous eigenvalue is very slightly below 1.
• This outcome comes from the small adjustment cost 𝜙1.

econ1.endo[1]

0.9999999999904767

The fact that the largest endogenous eigenvalue is strictly less than unity in modulus means that it is possible to compute
the non-stochastic steady state of consumption, investment and capital.
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econ1.compute_steadystate()
np.set_printoptions(precision=3, suppress=True)
print(econ1.css, econ1.iss, econ1.kss)

[[4.999]] [[-0.001]] [[-0.023]]

However, the near-unity endogenous eigenvalue means that these steady state values are of little relevance.

20.3.2 Example 2: Altered Growth Condition

We generate our next economy by making two alterations to the parameters of Example 1.
• First, we raise 𝜙1 from 0.00001 to 1.

– This will lower the endogenous eigenvalue that is close to 1, causing the economy to head more quickly to the
vicinity of its non-stochastic steady-state.

• Second, we raise 𝛾1 from 0.1 to 0.15.
– This has the effect of raising the optimal steady-state value of capital.

We also start the economy off from an initial condition with a lower capital stock

𝑥0 = [ 5 20 1 0 0 ]′

Therefore, we need to define the following new parameters

γ2 = 0.15
γ22 = np.array([[γ2], [0]])

ϕ_12 = 1
ϕ_i2 = np.array([[1], [-ϕ_12]])

tech2 = (ϕ_c, ϕ_g, ϕ_i2, γ22, δ_k, θ_k)

x02 = np.array([[5], [20], [1], [0], [0]])

Creating the DLE class and then simulating gives the following plot for consumption and investment

econ2 = DLE(info1, tech2, pref1)

econ2.compute_sequence(x02, ts_length=300)

plt.plot(econ2.c[0], label='Cons.')
plt.plot(econ2.i[0], label='Inv.')
plt.legend()
plt.show()
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Simulating our new economy shows that consumption grows quickly in the early stages of the sample.
However, it then settles down around the new non-stochastic steady-state level of consumption of 17.5, which we find as
follows

econ2.compute_steadystate()
print(econ2.css, econ2.iss, econ2.kss)

[[17.5]] [[6.25]] [[125.]]

The economy converges faster to this level than in Example 1 because the largest endogenous eigenvalue of 𝐴𝑜 is now
significantly lower than 1.

econ2.endo, econ2.exo

(array([0.9 , 0.952]), array([1. , 0.8, 0.5]))
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20.3.3 Example 3: A Jones-Manuelli (1990) Economy

For our third economy, we choose parameter values with the aim of generating sustained growth in consumption, invest-
ment and capital.
To do this, we set parameters so that Jones and Manuelli’s “growth condition” is just satisfied.
In our notation, just satisfying the growth condition is actually equivalent to setting 𝛽(𝛾1 + 𝛿𝑘) = 1, the condition that
was necessary for consumption to be a random walk in Hall’s model.
Thus, we lower 𝛾1 back to 0.1.
In our model, this is a necessary but not sufficient condition for growth.
To generate growth we set preference parameters to reflect habit persistence.
In particular, we set 𝜆 = −1, 𝛿ℎ = 0.9 and 𝜃ℎ = 1 − 𝛿ℎ = 0.1.
This makes preferences assume the form

−1
2𝔼

∞
∑
𝑡=0

𝛽𝑡[(𝑐𝑡 − 𝑏𝑡 − (1 − 𝛿ℎ)
∞

∑
𝑗=0

𝛿𝑗
ℎ𝑐𝑡−𝑗−1)2 + 𝑙2𝑡 ]

These preferences reflect habit persistence
• the effective “bliss point” 𝑏𝑡 + (1 − 𝛿ℎ) ∑∞

𝑗=0 𝛿𝑗
ℎ𝑐𝑡−𝑗−1 now shifts in response to a moving average of past con-

sumption
Since 𝛿ℎ and 𝜃ℎ were defined earlier, the only change we need to make from the parameters of Example 1 is to define the
new value of 𝜆.

l_λ2 = np.array([[-1]])
pref2 = (β, l_λ2, π_h, δ_h, θ_h)

econ3 = DLE(info1, tech1, pref2)

We simulate this economy from the original state vector

econ3.compute_sequence(x0, ts_length=300)

# This is the right panel of Fig 5.10.1 from p.110 of HS2013
plt.plot(econ3.c[0], label='Cons.')
plt.plot(econ3.i[0], label='Inv.')
plt.legend()
plt.show()
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Thus, adding habit persistence to the Hall model of Example 1 is enough to generate sustained growth in our economy.
The eigenvalues of 𝐴𝑜 in this new economy are

econ3.endo, econ3.exo

(array([1.+0.j, 1.-0.j]), array([1. , 0.8, 0.5]))

We now have two unit endogenous eigenvalues. One stems from satisfying the growth condition (as in Example 1).
The other unit eigenvalue results from setting 𝜆 = −1.
To show the importance of both of these for generating growth, we consider the following experiments.

20.3.4 Example 3.1: Varying Sensitivity

Next we raise 𝜆 to -0.7

l_λ3 = np.array([[-0.7]])
pref3 = (β, l_λ3, π_h, δ_h, θ_h)

econ4 = DLE(info1, tech1, pref3)

econ4.compute_sequence(x0, ts_length=300)

plt.plot(econ4.c[0], label='Cons.')
plt.plot(econ4.i[0], label='Inv.')
plt.legend()
plt.show()
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We no longer achieve sustained growth if 𝜆 is raised from -1 to -0.7.
This is related to the fact that one of the endogenous eigenvalues is now less than 1.

econ4.endo, econ4.exo

(array([0.97, 1. ]), array([1. , 0.8, 0.5]))

20.3.5 Example 3.2: More Impatience

Next let’s lower 𝛽 to 0.94

β_2 = np.array([[0.94]])
pref4 = (β_2, l_λ, π_h, δ_h, θ_h)

econ5 = DLE(info1, tech1, pref4)

econ5.compute_sequence(x0, ts_length=300)

plt.plot(econ5.c[0], label='Cons.')
plt.plot(econ5.i[0], label='Inv.')
plt.legend()
plt.show()
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Growth also fails if we lower 𝛽, since we now have 𝛽(𝛾1 + 𝛿𝑘) < 1.
Consumption and investment explode downwards, as a lower value of 𝛽 causes the representative consumer to front-load
consumption.
This explosive path shows up in the second endogenous eigenvalue now being larger than one.

econ5.endo, econ5.exo

(array([0.9 , 1.013]), array([1. , 0.8, 0.5]))
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CHAPTER

TWENTYONE

LUCAS ASSET PRICING USING DLE

Contents

• Lucas Asset Pricing Using DLE
– Asset Pricing Equations

– Asset Pricing Simulations

This is one of a suite of lectures that use the quantecon DLE class to instantiate models within the [Hansen and Sargent,
2013] class of models described in detail in Recursive Models of Dynamic Linear Economies.
In addition to what’s in Anaconda, this lecture uses the quantecon library

!pip install --upgrade quantecon

This lecture uses the DLE class to price payout streams that are linear functions of the economy’s state vector, as well as
risk-free assets that pay out one unit of the first consumption good with certainty.
We assume basic knowledge of the class of economic environments that fall within the domain of the DLE class.
Many details about the basic environment are contained in the lecture Growth in Dynamic Linear Economies.
We’ll also need the following imports

import numpy as np
import matplotlib.pyplot as plt
from quantecon import DLE

We use a linear-quadratic version of an economy that Lucas (1978) [Lucas, 1978] used to develop an equilibrium theory
of asset prices:
Preferences

−1
2𝔼

∞
∑
𝑡=0

𝛽𝑡[(𝑐𝑡 − 𝑏𝑡)2 + 𝑙2𝑡 ]|𝐽0

𝑠𝑡 = 𝑐𝑡

𝑏𝑡 = 𝑈𝑏𝑧𝑡

Technology

𝑐𝑡 = 𝑑1𝑡
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𝑘𝑡 = 𝛿𝑘𝑘𝑡−1 + 𝑖𝑡

𝑔𝑡 = 𝜙1𝑖𝑡 , 𝜙1 > 0

[ 𝑑1𝑡
0 ] = 𝑈𝑑𝑧𝑡

Information

𝑧𝑡+1 = ⎡⎢
⎣

1 0 0
0 0.8 0
0 0 0.5

⎤⎥
⎦

𝑧𝑡 + ⎡⎢
⎣

0 0
1 0
0 1

⎤⎥
⎦

𝑤𝑡+1

𝑈𝑏 = [ 30 0 0 ]

𝑈𝑑 = [ 5 1 0
0 0 0 ]

𝑥0 = [ 5 150 1 0 0 ]′

21.1 Asset Pricing Equations

[Hansen and Sargent, 2013] show that the time t value of a permanent claim to a stream 𝑦𝑠 = 𝑈𝑎𝑥𝑠 , 𝑠 ≥ 𝑡 is:

𝑎𝑡 = (𝑥′
𝑡𝜇𝑎𝑥𝑡 + 𝜎𝑎)/( ̄𝑒1𝑀𝑐𝑥𝑡)

with

𝜇𝑎 =
∞

∑
𝜏=0

𝛽𝜏(𝐴𝑜′)𝜏𝑍𝑎𝐴𝑜𝜏

𝜎𝑎 = 𝛽
1 − 𝛽 trace(𝑍𝑎

∞
∑
𝜏=0

𝛽𝜏(𝐴𝑜)𝜏𝐶𝐶 ′(𝐴𝑜′)𝜏)

where

𝑍𝑎 = 𝑈 ′
𝑎𝑀𝑐

The use of ̄𝑒1 indicates that the first consumption good is the numeraire.

21.2 Asset Pricing Simulations

gam = 0
γ = np.array([[gam], [0]])
ϕ_c = np.array([[1], [0]])
ϕ_g = np.array([[0], [1]])
ϕ_1 = 1e-4
ϕ_i = np.array([[0], [-ϕ_1]])
δ_k = np.array([[.95]])
θ_k = np.array([[1]])
β = np.array([[1 / 1.05]])
ud = np.array([[5, 1, 0],

[0, 0, 0]])
a22 = np.array([[1, 0, 0],

(continues on next page)
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(continued from previous page)

[0, 0.8, 0],
[0, 0, 0.5]])

c2 = np.array([[0, 1, 0],
[0, 0, 1]]).T

l_λ = np.array([[0]])
π_h = np.array([[1]])
δ_h = np.array([[.9]])
θ_h = np.array([[1]]) - δ_h
ub = np.array([[30, 0, 0]])
x0 = np.array([[5, 150, 1, 0, 0]]).T

info1 = (a22, c2, ub, ud)
tech1 = (ϕ_c, ϕ_g, ϕ_i, γ, δ_k, θ_k)
pref1 = (β, l_λ, π_h, δ_h, θ_h)

econ1 = DLE(info1, tech1, pref1)

After specifying a “Pay” matrix, we simulate the economy.
The particular choice of “Pay” used below means that we are pricing a perpetual claim on the endowment process 𝑑1𝑡

econ1.compute_sequence(x0, ts_length=100, Pay=np.array([econ1.Sd[0, :]]))

The graph below plots the price of this claim over time:

### Fig 7.12.1 from p.147 of HS2013
plt.plot(econ1.Pay_Price, label='Price of Tree')
plt.legend()
plt.show()
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The next plot displays the realized gross rate of return on this “Lucas tree” as well as on a risk-free one-period bond:

### Left panel of Fig 7.12.2 from p.148 of HS2013
plt.plot(econ1.Pay_Gross, label='Tree')
plt.plot(econ1.R1_Gross, label='Risk-Free')
plt.legend()
plt.show()
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np.corrcoef(econ1.Pay_Gross[1:, 0], econ1.R1_Gross[1:, 0])

array([[ 1. , -0.44842721],
[-0.44842721, 1. ]])

Above we have also calculated the correlation coefficient between these two returns.
To give an idea of how the term structure of interest rates moves in this economy, the next plot displays the net rates of
return on one-period and five-period risk-free bonds:

### Right panel of Fig 7.12.2 from p.148 of HS2013
plt.plot(econ1.R1_Net, label='One-Period')
plt.plot(econ1.R5_Net, label='Five-Period')
plt.legend()
plt.show()
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From the above plot, we can see the tendency of the term structure to slope up when rates are low and to slope down when
rates are high.
Comparing it to the previous plot of the price of the “Lucas tree”, we can also see that net rates of return are low when
the price of the tree is high, and vice versa.
We now plot the realized gross rate of return on a “Lucas tree” as well as on a risk-free one-period bond when the
autoregressive parameter for the endowment process is reduced to 0.4:

a22_2 = np.array([[1, 0, 0],
[0, 0.4, 0],
[0, 0, 0.5]])

info2 = (a22_2, c2, ub, ud)

econ2 = DLE(info2, tech1, pref1)
econ2.compute_sequence(x0, ts_length=100, Pay=np.array([econ2.Sd[0, :]]))

### Left panel of Fig 7.12.3 from p.148 of HS2013
plt.plot(econ2.Pay_Gross, label='Tree')
plt.plot(econ2.R1_Gross, label='Risk-Free')
plt.legend()
plt.show()
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np.corrcoef(econ2.Pay_Gross[1:, 0], econ2.R1_Gross[1:, 0])

array([[ 1. , -0.65282644],
[-0.65282644, 1. ]])

The correlation between these two gross rates is now more negative.
Next, we again plot the net rates of return on one-period and five-period risk-free bonds:

### Right panel of Fig 7.12.3 from p.148 of HS2013
plt.plot(econ2.R1_Net, label='One-Period')
plt.plot(econ2.R5_Net, label='Five-Period')
plt.legend()
plt.show()
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We can see the tendency of the term structure to slope up when rates are low (and down when rates are high) has been
accentuated relative to the first instance of our economy.
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CHAPTER

TWENTYTWO

IRFS IN HALL MODELS

Contents

• IRFs in Hall Models
– Example 1: Hall (1978)

– Example 2: Higher Adjustment Costs

– Example 3: Durable Consumption Goods

This is another member of a suite of lectures that use the quantecon DLE class to instantiate models within the [Hansen
and Sargent, 2013] class of models described in detail in Recursive Models of Dynamic Linear Economies.
In addition to what’s in Anaconda, this lecture uses the quantecon library.

!pip install --upgrade quantecon

We’ll make these imports:

import numpy as np
import matplotlib.pyplot as plt
from quantecon import DLE

This lecture shows how the DLE class can be used to create impulse response functions for three related economies,
starting from Hall (1978) [Hall, 1978].
Knowledge of the basic economic environment is assumed.
See the lecture “Growth in Dynamic Linear Economies” for more details.

22.1 Example 1: Hall (1978)

First, we set parameters to make consumption (almost) follow a random walk.
We set

𝜆 = 0, 𝜋 = 1, 𝛾1 = 0.1, 𝜙1 = 0.00001, 𝛿𝑘 = 0.95, 𝛽 = 1
1.05

(In this example 𝛿ℎ and 𝜃ℎ are arbitrary as household capital does not enter the equation for consumption services.
We set them to values that will become useful in Example 3)
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It is worth noting that this choice of parameter values ensures that 𝛽(𝛾1 + 𝛿𝑘) = 1.
For simulations of this economy, we choose an initial condition of:

𝑥0 = [ 5 150 1 0 0 ]′

γ_1 = 0.1
γ = np.array([[γ_1], [0]])
ϕ_c = np.array([[1], [0]])
ϕ_g = np.array([[0], [1]])
ϕ_1 = 1e-5
ϕ_i = np.array([[1], [-ϕ_1]])
δ_k = np.array([[.95]])
θ_k = np.array([[1]])
β = np.array([[1 / 1.05]])
l_λ = np.array([[0]])
π_h = np.array([[1]])
δ_h = np.array([[.9]])
θ_h = np.array([[1]])
a22 = np.array([[1, 0, 0],

[0, 0.8, 0],
[0, 0, 0.5]])

c2 = np.array([[0, 0],
[1, 0],
[0, 1]])

ud = np.array([[5, 1, 0],
[0, 0, 0]])

ub = np.array([[30, 0, 0]])
x0 = np.array([[5], [150], [1], [0], [0]])

info1 = (a22, c2, ub, ud)
tech1 = (ϕ_c, ϕ_g, ϕ_i, γ, δ_k, θ_k)
pref1 = (β, l_λ, π_h, δ_h, θ_h)

These parameter values are used to define an economy of the DLE class.
We can then simulate the economy for a chosen length of time, from our initial state vector 𝑥0.
The economy stores the simulated values for each variable. Below we plot consumption and investment:

econ1 = DLE(info1, tech1, pref1)
econ1.compute_sequence(x0, ts_length=300)

# This is the right panel of Fig 5.7.1 from p.105 of HS2013
plt.plot(econ1.c[0], label='Cons.')
plt.plot(econ1.i[0], label='Inv.')
plt.legend()
plt.show()
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The DLE class can be used to create impulse response functions for each of the endogenous variables:
{𝑐𝑡, 𝑠𝑡, ℎ𝑡, 𝑖𝑡, 𝑘𝑡, 𝑔𝑡}.
If no selector vector for the shock is specified, the default choice is to give IRFs to the first shock in 𝑤𝑡+1.
Below we plot the impulse response functions of investment and consumption to an endowment innovation (the first shock)
in the Hall model:

econ1.irf(ts_length=40, shock=None)
# This is the left panel of Fig 5.7.1 from p.105 of HS2013
plt.plot(econ1.c_irf, label='Cons.')
plt.plot(econ1.i_irf, label='Inv.')
plt.legend()
plt.show()
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It can be seen that the endowment shock has permanent effects on the level of both consumption and investment, consistent
with the endogenous unit eigenvalue in this economy.
Investment is much more responsive to the endowment shock at shorter time horizons.

22.2 Example 2: Higher Adjustment Costs

We generate our next economy by making only one change to the parameters of Example 1: we raise the parameter
associated with the cost of adjusting capital,𝜙1, from 0.00001 to 0.2.
This will lower the endogenous eigenvalue that is unity in Example 1 to a value slightly below 1.

ϕ_12 = 0.2
ϕ_i2 = np.array([[1], [-ϕ_12]])
tech2 = (ϕ_c, ϕ_g, ϕ_i2, γ, δ_k, θ_k)

econ2 = DLE(info1, tech2, pref1)
econ2.compute_sequence(x0, ts_length = 300)

# This is the right panel of Fig 5.8.1 from p.106 of HS2013
plt.plot(econ2.c[0], label='Cons.')
plt.plot(econ2.i[0], label='Inv.')
plt.legend()
plt.show()
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econ2.irf(ts_length=40,shock=None)
# This is the left panel of Fig 5.8.1 from p.106 of HS2013
plt.plot(econ2.c_irf,label='Cons.')
plt.plot(econ2.i_irf,label='Inv.')
plt.legend()
plt.show()
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econ2.endo

array([0.9 , 0.99657126])

econ2.compute_steadystate()
print(econ2.css, econ2.iss, econ2.kss)

[[5.]] [[2.92940472e-12]] [[5.85879555e-11]]

The first graph shows that there seems to be a downward trend in both consumption and investment.
This is a consequence of the decrease in the largest endogenous eigenvalue from unity in the earlier economy, caused by
the higher adjustment cost.
The present economy has a nonstochastic steady state value of 5 for consumption and 0 for both capital and investment.
Because the largest endogenous eigenvalue is still close to 1, the economy heads only slowly towards these mean values.
The impulse response functions now show that an endowment shock does not have a permanent effect on the levels of
either consumption or investment.
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22.3 Example 3: Durable Consumption Goods

We generate our third economy by raising 𝜙1 further, to 1.0. We also raise the production function parameter from 0.1
to 0.15 (which raises the non-stochastic steady state value of capital above zero).
We also change the specification of preferences to make the consumption good durable.
Specifically, we allow for a single durable household good obeying:

ℎ𝑡 = 𝛿ℎℎ𝑡−1 + 𝑐𝑡 , 0 < 𝛿ℎ < 1

Services are related to the stock of durables at the beginning of the period:

𝑠𝑡 = 𝜆ℎ𝑡−1 , 𝜆 > 0

And preferences are ordered by:

−1
2𝔼

∞
∑
𝑡=0

𝛽𝑡[(𝜆ℎ𝑡−1 − 𝑏𝑡)2 + 𝑙2𝑡 ]|𝐽0

To implement this, we set 𝜆 = 0.1 and 𝜋 = 0 (we have already set 𝜃ℎ = 1 and 𝛿ℎ = 0.9).
We start from an initial condition that makes consumption begin near around its non-stochastic steady state.

ϕ_13 = 1
ϕ_i3 = np.array([[1], [-ϕ_13]])

γ_12 = 0.15
γ_2 = np.array([[γ_12], [0]])

l_λ2 = np.array([[0.1]])
π_h2 = np.array([[0]])

x01 = np.array([[150], [100], [1], [0], [0]])

tech3 = (ϕ_c, ϕ_g, ϕ_i3, γ_2, δ_k, θ_k)
pref2 = (β, l_λ2, π_h2, δ_h, θ_h)

econ3 = DLE(info1, tech3, pref2)
econ3.compute_sequence(x01, ts_length=300)

# This is the right panel of Fig 5.11.1 from p.111 of HS2013
plt.plot(econ3.c[0], label='Cons.')
plt.plot(econ3.i[0], label='Inv.')
plt.legend()
plt.show()
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In contrast to Hall’s original model of Example 1, it is now investment that is much smoother than consumption.
This illustrates how making consumption goods durable tends to undo the strong consumption smoothing result that Hall
obtained.

econ3.irf(ts_length=40, shock=None)
# This is the left panel of Fig 5.11.1 from p.111 of HS2013
plt.plot(econ3.c_irf, label='Cons.')
plt.plot(econ3.i_irf, label='Inv.')
plt.legend()
plt.show()
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The impulse response functions confirm that consumption is now much more responsive to an endowment shock (and
investment less so) than in Example 1.
As in Example 2, the endowment shock has permanent effects on neither variable.
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CHAPTER

TWENTYTHREE

PERMANENT INCOME MODEL USING THE DLE CLASS

Contents

• Permanent Income Model using the DLE Class
– The Permanent Income Model

This lecture is part of a suite of lectures that use the quantecon DLE class to instantiate models within the [Hansen and
Sargent, 2013] class of models described in detail in Recursive Models of Dynamic Linear Economies.
In addition to what’s included in Anaconda, this lecture uses the quantecon library.

!pip install --upgrade quantecon

This lecture adds a third solution method for the linear-quadratic-Gaussian permanent income model with 𝛽𝑅 = 1, com-
plementing the other two solution methods described in Optimal Savings I: The Permanent Income Model and Optimal
Savings II: LQ Techniques and this Jupyter notebook.
The additional solution method uses the DLE class.
In this way, we map the permanent income model into the framework of Hansen & Sargent (2013) “Recursive Models
of Dynamic Linear Economies” [Hansen and Sargent, 2013].
We’ll also require the following imports

import numpy as np
import matplotlib.pyplot as plt
from quantecon import DLE

np.set_printoptions(suppress=True, precision=4)

23.1 The Permanent Income Model

The LQ permanent income model is an example of a savings problem.
A consumer has preferences over consumption streams that are ordered by the utility functional

𝐸0
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡) (23.1)

where 𝐸𝑡 is the mathematical expectation conditioned on the consumer’s time 𝑡 information, 𝑐𝑡 is time 𝑡 consumption,
𝑢(𝑐) is a strictly concave one-period utility function, and 𝛽 ∈ (0, 1) is a discount factor.
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The LQ model gets its name partly from assuming that the utility function 𝑢 is quadratic:

𝑢(𝑐) = −.5(𝑐 − 𝛾)2

where 𝛾 > 0 is a bliss level of consumption.
The consumer maximizes the utility functional (23.1) by choosing a consumption, borrowing plan {𝑐𝑡, 𝑏𝑡+1}∞

𝑡=0 subject
to the sequence of budget constraints

𝑐𝑡 + 𝑏𝑡 = 𝑅−1𝑏𝑡+1 + 𝑦𝑡, 𝑡 ≥ 0 (23.2)

where 𝑦𝑡 is an exogenous stationary endowment process, 𝑅 is a constant gross risk-free interest rate, 𝑏𝑡 is one-period
risk-free debt maturing at 𝑡, and 𝑏0 is a given initial condition.
We shall assume that 𝑅−1 = 𝛽.
Equation (23.2) is linear.
We use another set of linear equations to model the endowment process.
In particular, we assume that the endowment process has the state-space representation

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1
𝑦𝑡 = 𝑈𝑦𝑧𝑡

(23.3)

where 𝑤𝑡+1 is an IID process with mean zero and identity contemporaneous covariance matrix, 𝐴22 is a stable matrix,
its eigenvalues being strictly below unity in modulus, and 𝑈𝑦 is a selection vector that identifies 𝑦 with a particular linear
combination of the 𝑧𝑡.
We impose the following condition on the consumption, borrowing plan:

𝐸0
∞

∑
𝑡=0

𝛽𝑡𝑏2
𝑡 < +∞ (23.4)

This condition suffices to rule out Ponzi schemes.
(We impose this condition to rule out a borrow-more-and-more plan that would allow the household to enjoy bliss con-
sumption forever)
The state vector confronting the household at 𝑡 is

𝑥𝑡 = [𝑧𝑡
𝑏𝑡

]

where 𝑏𝑡 is its one-period debt falling due at the beginning of period 𝑡 and 𝑧𝑡 contains all variables useful for forecasting
its future endowment.
We assume that {𝑦𝑡} follows a second order univariate autoregressive process:

𝑦𝑡+1 = 𝛼 + 𝜌1𝑦𝑡 + 𝜌2𝑦𝑡−1 + 𝜎𝑤𝑡+1

23.1.1 Solution with the DLE Class

One way of solving this model is to map the problem into the framework outlined in Section 4.8 of [Hansen and Sargent,
2013] by setting up our technology, information and preference matrices as follows:

Technology: 𝜙𝑐 = [ 1
0 ] , 𝜙𝑔 = [ 0

1 ] , 𝜙𝑖 = [ −1
−0.00001 ], Γ = [ −1

0 ], Δ𝑘 = 0, Θ𝑘 = 𝑅.
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Information: 𝐴22 = ⎡⎢
⎣

1 0 0
𝛼 𝜌1 𝜌2
0 1 0

⎤⎥
⎦
, 𝐶2 = ⎡⎢

⎣

0
𝜎
0

⎤⎥
⎦
, 𝑈𝑏 = [ 𝛾 0 0 ], 𝑈𝑑 = [ 0 1 0

0 0 0 ].

Preferences: Λ = 0, Π = 1, Δℎ = 0, Θℎ = 0.
We set parameters
𝛼 = 10, 𝛽 = 0.95, 𝜌1 = 0.9, 𝜌2 = 0, 𝜎 = 1
(The value of 𝛾 does not affect the optimal decision rule)
The chosen matrices mean that the household’s technology is:

𝑐𝑡 + 𝑘𝑡−1 = 𝑖𝑡 + 𝑦𝑡

𝑘𝑡
𝑅 = 𝑖𝑡

𝑙2𝑡 = (0.00001)2𝑖𝑡

Combining the first two of these gives the budget constraint of the permanent income model, where 𝑘𝑡 = 𝑏𝑡+1.
The third equation is a very small penalty on debt-accumulation to rule out Ponzi schemes.
We set up this instance of the DLE class below:

α, β, ρ_1, ρ_2, σ = 10, 0.95, 0.9, 0, 1

γ = np.array([[-1], [0]])
ϕ_c = np.array([[1], [0]])
ϕ_g = np.array([[0], [1]])
ϕ_1 = 1e-5
ϕ_i = np.array([[-1], [-ϕ_1]])
δ_k = np.array([[0]])
θ_k = np.array([[1 / β]])
β = np.array([[β]])
l_λ = np.array([[0]])
π_h = np.array([[1]])
δ_h = np.array([[0]])
θ_h = np.array([[0]])

a22 = np.array([[1, 0, 0],
[α, ρ_1, ρ_2],
[0, 1, 0]])

c2 = np.array([[0], [σ], [0]])
ud = np.array([[0, 1, 0],

[0, 0, 0]])
ub = np.array([[100, 0, 0]])

x0 = np.array([[0], [0], [1], [0], [0]])

info1 = (a22, c2, ub, ud)
tech1 = (ϕ_c, ϕ_g, ϕ_i, γ, δ_k, θ_k)
pref1 = (β, l_λ, π_h, δ_h, θ_h)
econ1 = DLE(info1, tech1, pref1)

To check the solution of this model with that from the LQ problem, we select the 𝑆𝑐 matrix from the DLE class.
The solution to the DLE economy has:

𝑐𝑡 = 𝑆𝑐𝑥𝑡
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econ1.Sc

array([[ 0. , -0.05 , 65.5172, 0.3448, 0. ]])

The state vector in the DLE class is:

𝑥𝑡 = ⎡⎢
⎣

ℎ𝑡−1
𝑘𝑡−1
𝑧𝑡

⎤⎥
⎦

where 𝑘𝑡−1 = 𝑏𝑡 is set up to be 𝑏𝑡 in the permanent income model.

The state vector in the LQ problem is [𝑧𝑡
𝑏𝑡

].

Consequently, the relevant elements of econ1.Sc are the same as in −𝐹 occur when we apply other approaches to the
same model in the lecture Optimal Savings II: LQ Techniques and this Jupyter notebook.
The plot below quickly replicates the first two figures of that lecture and that notebook to confirm that the solutions are
the same

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))

for i in range(25):
econ1.compute_sequence(x0, ts_length=150)
ax1.plot(econ1.c[0], c='g')
ax1.plot(econ1.d[0], c='b')

ax1.plot(econ1.c[0], label='Consumption', c='g')
ax1.plot(econ1.d[0], label='Income', c='b')
ax1.legend()

for i in range(25):
econ1.compute_sequence(x0, ts_length=150)
ax2.plot(econ1.k[0], color='r')

ax2.plot(econ1.k[0], label='Debt', c='r')
ax2.legend()
plt.show()
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CHAPTER

TWENTYFOUR

ROSEN SCHOOLING MODEL

Contents

• Rosen Schooling Model
– A One-Occupation Model

– Mapping into HS2013 Framework

This lecture is yet another part of a suite of lectures that use the quantecon DLE class to instantiate models within the
[Hansen and Sargent, 2013] class of models described in detail in Recursive Models of Dynamic Linear Economies.
In addition to what’s included in Anaconda, this lecture uses the quantecon library

!pip install --upgrade quantecon

We’ll also need the following imports:

import numpy as np
import matplotlib.pyplot as plt
from collections import namedtuple
from quantecon import DLE

24.1 A One-Occupation Model

Ryoo and Rosen’s (2004) [Ryoo and Rosen, 2004] partial equilibrium model determines
• a stock of “Engineers” 𝑁𝑡

• a number of new entrants in engineering school, 𝑛𝑡

• the wage rate of engineers, 𝑤𝑡

It takes k periods of schooling to become an engineer.
The model consists of the following equations:

• a demand curve for engineers:

𝑤𝑡 = −𝛼𝑑𝑁𝑡 + 𝜖𝑑𝑡

• a time-to-build structure of the education process:

𝑁𝑡+𝑘 = 𝛿𝑁𝑁𝑡+𝑘−1 + 𝑛𝑡
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• a definition of the discounted present value of each new engineering student:

𝑣𝑡 = 𝛽𝑘𝔼
∞

∑
𝑗=0

(𝛽𝛿𝑁)𝑗𝑤𝑡+𝑘+𝑗

• a supply curve of new students driven by present value 𝑣𝑡:

𝑛𝑡 = 𝛼𝑠𝑣𝑡 + 𝜖𝑠𝑡

24.2 Mapping into HS2013 Framework

We represent this model in the [Hansen and Sargent, 2013] framework by
• sweeping the time-to-build structure and the demand for engineers into the household technology, and
• putting the supply of engineers into the technology for producing goods

24.2.1 Preferences

Π = 0, Λ = [𝛼𝑑 0 ⋯ 0] , Δℎ =
⎡
⎢
⎢
⎢
⎣

𝛿𝑁 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ ⋯ 0 1
0 0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎦

, Θℎ =
⎡
⎢
⎢
⎢
⎣

0
0
⋮
0
1

⎤
⎥
⎥
⎥
⎦

where Λ is a k+1 x 1 matrix, Δℎ is a k_1 x k+1 matrix, and Θℎ is a k+1 x 1 matrix.
This specification sets 𝑁𝑡 = ℎ1𝑡−1, 𝑛𝑡 = 𝑐𝑡, ℎ𝜏+1,𝑡−1 = 𝑛𝑡−(𝑘−𝜏) for 𝜏 = 1, ..., 𝑘.
Below we set things up so that the number of years of education, 𝑘, can be varied.

24.2.2 Technology

To capture Ryoo and Rosen’s [Ryoo and Rosen, 2004] supply curve, we use the physical technology:

𝑐𝑡 = 𝑖𝑡 + 𝑑1𝑡

𝜓1𝑖𝑡 = 𝑔𝑡

where 𝜓1 is inversely proportional to 𝛼𝑠.

24.2.3 Information

Because we want 𝑏𝑡 = 𝜖𝑑𝑡 and 𝑑1𝑡 = 𝜖𝑠𝑡, we set

𝐴22 = ⎡⎢
⎣

1 0 0
0 𝜌𝑠 0
0 0 𝜌𝑑

⎤⎥
⎦

, 𝐶2 = ⎡⎢
⎣

0 0
1 0
0 1

⎤⎥
⎦

, 𝑈𝑏 = [30 0 1] , 𝑈𝑑 = [10 1 0
0 0 0]

where 𝜌𝑠 and 𝜌𝑑 describe the persistence of the supply and demand shocks

Information = namedtuple('Information', ['a22', 'c2','ub','ud'])
Technology = namedtuple('Technology', ['ϕ_c', 'ϕ_g', 'ϕ_i', 'γ', 'δ_k', 'θ_k'])
Preferences = namedtuple('Preferences', ['β', 'l_λ', 'π_h', 'δ_h', 'θ_h'])
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24.2.4 Effects of Changes in Education Technology and Demand

We now study how changing
• the number of years of education required to become an engineer and
• the slope of the demand curve

affects responses to demand shocks.
To begin, we set 𝑘 = 4 and 𝛼𝑑 = 0.1

k = 4 # Number of periods of schooling required to become an engineer

β = np.array([[1 / 1.05]])
α_d = np.array([[0.1]])
α_s = 1
ε_1 = 1e-7
λ_1 = np.full((1, k), ε_1)
# Use of ε_1 is trick to aquire detectability, see HS2013 p. 228 footnote 4
l_λ = np.hstack((α_d, λ_1))
π_h = np.array([[0]])

δ_n = np.array([[0.95]])
d1 = np.vstack((δ_n, np.zeros((k - 1, 1))))
d2 = np.hstack((d1, np.eye(k)))
δ_h = np.vstack((d2, np.zeros((1, k + 1))))

θ_h = np.vstack((np.zeros((k, 1)),
np.ones((1, 1))))

ψ_1 = 1 / α_s

ϕ_c = np.array([[1], [0]])
ϕ_g = np.array([[0], [-1]])
ϕ_i = np.array([[-1], [ψ_1]])
γ = np.array([[0], [0]])

δ_k = np.array([[0]])
θ_k = np.array([[0]])

ρ_s = 0.8
ρ_d = 0.8

a22 = np.array([[1, 0, 0],
[0, ρ_s, 0],
[0, 0, ρ_d]])

c2 = np.array([[0, 0], [10, 0], [0, 10]])
ub = np.array([[30, 0, 1]])
ud = np.array([[10, 1, 0], [0, 0, 0]])

info1 = Information(a22, c2, ub, ud)
tech1 = Technology(ϕ_c, ϕ_g, ϕ_i, γ, δ_k, θ_k)
pref1 = Preferences(β, l_λ, π_h, δ_h, θ_h)

econ1 = DLE(info1, tech1, pref1)

We create three other instances by:
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1. Raising 𝛼𝑑 to 2
2. Raising 𝑘 to 7
3. Raising 𝑘 to 10

α_d = np.array([[2]])
l_λ = np.hstack((α_d, λ_1))
pref2 = Preferences(β, l_λ, π_h, δ_h, θ_h)
econ2 = DLE(info1, tech1, pref2)

α_d = np.array([[0.1]])

k = 7
λ_1 = np.full((1, k), ε_1)
l_λ = np.hstack((α_d, λ_1))
d1 = np.vstack((δ_n, np.zeros((k - 1, 1))))
d2 = np.hstack((d1, np.eye(k)))
δ_h = np.vstack((d2, np.zeros((1, k+1))))
θ_h = np.vstack((np.zeros((k, 1)),

np.ones((1, 1))))

Pref3 = Preferences(β, l_λ, π_h, δ_h, θ_h)
econ3 = DLE(info1, tech1, Pref3)

k = 10
λ_1 = np.full((1, k), ε_1)
l_λ = np.hstack((α_d, λ_1))
d1 = np.vstack((δ_n, np.zeros((k - 1, 1))))
d2 = np.hstack((d1, np.eye(k)))
δ_h = np.vstack((d2, np.zeros((1, k + 1))))
θ_h = np.vstack((np.zeros((k, 1)),

np.ones((1, 1))))

pref4 = Preferences(β, l_λ, π_h, δ_h, θ_h)
econ4 = DLE(info1, tech1, pref4)

shock_demand = np.array([[0], [1]])

econ1.irf(ts_length=25, shock=shock_demand)
econ2.irf(ts_length=25, shock=shock_demand)
econ3.irf(ts_length=25, shock=shock_demand)
econ4.irf(ts_length=25, shock=shock_demand)

The first figure plots the impulse response of 𝑛𝑡 (on the left) and𝑁𝑡 (on the right) to a positive demand shock, for𝛼𝑑 = 0.1
and 𝛼𝑑 = 2.
When 𝛼𝑑 = 2, the number of new students 𝑛𝑡 rises initially, but the response then turns negative.
A positive demand shock raises wages, drawing new students into the profession.
However, these new students raise 𝑁𝑡.
The higher is 𝛼𝑑, the larger the effect of this rise in 𝑁𝑡 on wages.
This counteracts the demand shock’s positive effect on wages, reducing the number of new students in subsequent periods.
Consequently, when 𝛼𝑑 is lower, the effect of a demand shock on 𝑁𝑡 is larger
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fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(econ1.c_irf,label='$\\alpha_d = 0.1$')
ax1.plot(econ2.c_irf,label='$\\alpha_d = 2$')
ax1.legend()
ax1.set_title('Response of $n_t$ to a demand shock')

ax2.plot(econ1.h_irf[:, 0], label='$\\alpha_d = 0.1$')
ax2.plot(econ2.h_irf[:, 0], label='$\\alpha_d = 24$')
ax2.legend()
ax2.set_title('Response of $N_t$ to a demand shock')
plt.show()

The next figure plots the impulse response of 𝑛𝑡 (on the left) and 𝑁𝑡 (on the right) to a positive demand shock, for 𝑘 = 4,
𝑘 = 7 and 𝑘 = 10 (with 𝛼𝑑 = 0.1)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(econ1.c_irf, label='$k=4$')
ax1.plot(econ3.c_irf, label='$k=7$')
ax1.plot(econ4.c_irf, label='$k=10$')
ax1.legend()
ax1.set_title('Response of $n_t$ to a demand shock')

ax2.plot(econ1.h_irf[:,0], label='$k=4$')
ax2.plot(econ3.h_irf[:,0], label='$k=7$')
ax2.plot(econ4.h_irf[:,0], label='$k=10$')
ax2.legend()
ax2.set_title('Response of $N_t$ to a demand shock')
plt.show()
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Both panels in the above figure show that raising 𝑘 lowers the effect of a positive demand shock on entry into the engi-
neering profession.
Increasing the number of periods of schooling lowers the number of new students in response to a demand shock.
This occurs because with longer required schooling, new students ultimately benefit less from the impact of that shock on
wages.
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CHAPTER

TWENTYFIVE

CATTLE CYCLES

Contents

• Cattle Cycles
– The Model

– Mapping into HS2013 Framework

This is another member of a suite of lectures that use the quantecon DLE class to instantiate models within the [Hansen
and Sargent, 2013] class of models described in detail in Recursive Models of Dynamic Linear Economies.
In addition to what’s in Anaconda, this lecture uses the quantecon library.

!pip install --upgrade quantecon

This lecture uses the DLE class to construct instances of the “Cattle Cycles” model of Rosen, Murphy and Scheinkman
(1994) [Rosen et al., 1994].
That paper constructs a rational expectations equilibrium model to understand sources of recurrent cycles in US cattle
stocks and prices.
We make the following imports:

import numpy as np
import matplotlib.pyplot as plt
from collections import namedtuple
from quantecon import DLE
from math import sqrt

25.1 The Model

The model features a static linear demand curve and a “time-to-grow” structure for cattle.
Let 𝑝𝑡 be the price of slaughtered beef, 𝑚𝑡 the cost of preparing an animal for slaughter, ℎ𝑡 the holding cost for a mature
animal, 𝛾1ℎ𝑡 the holding cost for a yearling, and 𝛾0ℎ𝑡 the holding cost for a calf.
The cost processes {ℎ𝑡, 𝑚𝑡}∞

𝑡=0 are exogenous, while the price process {𝑝𝑡}∞
𝑡=0 is determined within a rational expecta-

tions equilibrium.
Let 𝑥𝑡 be the breeding stock, and 𝑦𝑡 be the total stock of cattle.
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The law of motion for the breeding stock is

𝑥𝑡 = (1 − 𝛿)𝑥𝑡−1 + 𝑔𝑥𝑡−3 − 𝑐𝑡

where 𝑔 < 1 is the number of calves that each member of the breeding stock has each year, and 𝑐𝑡 is the number of cattle
slaughtered.
The total headcount of cattle is

𝑦𝑡 = 𝑥𝑡 + 𝑔𝑥𝑡−1 + 𝑔𝑥𝑡−2

This equation states that the total number of cattle equals the sum of adults, calves and yearlings, respectively.
A representative farmer chooses {𝑐𝑡, 𝑥𝑡} to maximize:

𝔼0
∞

∑
𝑡=0

𝛽𝑡{𝑝𝑡𝑐𝑡 − ℎ𝑡𝑥𝑡 − 𝛾0ℎ𝑡(𝑔𝑥𝑡−1) − 𝛾1ℎ𝑡(𝑔𝑥𝑡−2) − 𝑚𝑡𝑐𝑡 − 𝜓1
2 𝑥2

𝑡 − 𝜓2
2 𝑥2

𝑡−1 − 𝜓3
2 𝑥2

𝑡−3 − 𝜓4
2 𝑐2

𝑡 }

subject to the law of motion for 𝑥𝑡, taking as given the stochastic laws of motion for the exogenous processes, the equi-
librium price process, and the initial state [𝑥−1, 𝑥−2, 𝑥−3].
Remark The 𝜓𝑗 parameters are very small quadratic costs that are included for technical reasons to make well posed and
well behaved the linear quadratic dynamic programming problem solved by the fictitious planner who in effect chooses
equilibrium quantities and shadow prices.

Demand for beef is government by 𝑐𝑡 = 𝑎0 − 𝑎1𝑝𝑡 + ̃𝑑𝑡 where ̃𝑑𝑡 is a stochastic process with mean zero, representing a
demand shifter.

25.2 Mapping into HS2013 Framework

25.2.1 Preferences

We set Λ = 0, Δℎ = 0, Θℎ = 0, Π = 𝛼− 1
2

1 and 𝑏𝑡 = Π ̃𝑑𝑡 + Π𝛼0.
With these settings, the FOC for the household’s problem becomes the demand curve of the “Cattle Cycles” model.

25.2.2 Technology

To capture the law of motion for cattle, we set

Δ𝑘 = ⎡⎢
⎣

(1 − 𝛿) 0 𝑔
1 0 0
0 1 0

⎤⎥
⎦

, Θ𝑘 = ⎡⎢
⎣

1
0
0

⎤⎥
⎦

(where 𝑖𝑡 = −𝑐𝑡).
To capture the production of cattle, we set

Φ𝑐 =
⎡
⎢
⎢
⎢
⎣

1
𝑓1
0
0

−𝑓7

⎤
⎥
⎥
⎥
⎦

, Φ𝑔 =
⎡
⎢
⎢
⎢
⎣

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

, Φ𝑖 =
⎡
⎢
⎢
⎢
⎣

1
0
0
0
0

⎤
⎥
⎥
⎥
⎦

, Γ =
⎡
⎢
⎢
⎢
⎣

0 0 0
𝑓1(1 − 𝛿) 0 𝑔𝑓1

𝑓3 0 0
0 𝑓5 0
0 0 0

⎤
⎥
⎥
⎥
⎦
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25.2.3 Information

We set

𝐴22 =
⎡
⎢⎢
⎣

1 0 0 0
0 𝜌1 0 0
0 0 𝜌2 0
0 0 0 𝜌3

⎤
⎥⎥
⎦

, 𝐶2 =
⎡
⎢⎢
⎣

0 0 0
1 0 0
0 1 0
0 0 15

⎤
⎥⎥
⎦

, 𝑈𝑏 = [ Π𝛼0 0 0 Π ] , 𝑈𝑑 =
⎡
⎢
⎢
⎢
⎣

0
𝑓2𝑈ℎ
𝑓4𝑈ℎ
𝑓6𝑈ℎ
𝑓8𝑈ℎ

⎤
⎥
⎥
⎥
⎦

To map this into our class, we set 𝑓2
1 = Ψ1

2 , 𝑓2
2 = Ψ2

2 , 𝑓2
3 = Ψ3

2 , 2𝑓1𝑓2 = 1, 2𝑓3𝑓4 = 𝛾0𝑔, 2𝑓5𝑓6 = 𝛾1𝑔.

# We define namedtuples in this way as it allows us to check, for example,
# what matrices are associated with a particular technology.

Information = namedtuple('Information', ['a22', 'c2', 'ub', 'ud'])
Technology = namedtuple('Technology', ['ϕ_c', 'ϕ_g', 'ϕ_i', 'γ', 'δ_k', 'θ_k'])
Preferences = namedtuple('Preferences', ['β', 'l_λ', 'π_h', 'δ_h', 'θ_h'])

We set parameters to those used by [Rosen et al., 1994]

β = np.array([[0.909]])
lλ = np.array([[0]])

a1 = 0.5
πh = np.array([[1 / (sqrt(a1))]])
δh = np.array([[0]])
θh = np.array([[0]])

δ = 0.1
g = 0.85
f1 = 0.001
f3 = 0.001
f5 = 0.001
f7 = 0.001

ϕc = np.array([[1], [f1], [0], [0], [-f7]])

ϕg = np.array([[0, 0, 0, 0],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1,0],
[0, 0, 0, 1]])

ϕi = np.array([[1], [0], [0], [0], [0]])

γ = np.array([[ 0, 0, 0],
[f1 * (1 - δ), 0, g * f1],
[ f3, 0, 0],
[ 0, f5, 0],
[ 0, 0, 0]])

δk = np.array([[1 - δ, 0, g],
[ 1, 0, 0],
[ 0, 1, 0]])

θk = np.array([[1], [0], [0]])

(continues on next page)
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ρ1 = 0
ρ2 = 0
ρ3 = 0.6
a0 = 500
γ0 = 0.4
γ1 = 0.7
f2 = 1 / (2 * f1)
f4 = γ0 * g / (2 * f3)
f6 = γ1 * g / (2 * f5)
f8 = 1 / (2 * f7)

a22 = np.array([[1, 0, 0, 0],
[0, ρ1, 0, 0],
[0, 0, ρ2, 0],
[0, 0, 0, ρ3]])

c2 = np.array([[0, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 15]])

πh_scalar = πh.item()
ub = np.array([[πh_scalar * a0, 0, 0, πh_scalar]])
uh = np.array([[50, 1, 0, 0]])
um = np.array([[100, 0, 1, 0]])
ud = np.vstack(([0, 0, 0, 0],

f2 * uh, f4 * uh, f6 * uh, f8 * um))

Notice that we have set 𝜌1 = 𝜌2 = 0, so ℎ𝑡 and 𝑚𝑡 consist of a constant and a white noise component.
We set up the economy using tuples for information, technology and preference matrices below.
We also construct two extra information matrices, corresponding to cases when 𝜌3 = 1 and 𝜌3 = 0 (as opposed to the
baseline case of 𝜌3 = 0.6).

info1 = Information(a22, c2, ub, ud)
tech1 = Technology(ϕc, ϕg, ϕi, γ, δk, θk)
pref1 = Preferences(β, lλ, πh, δh, θh)

ρ3_2 = 1
a22_2 = np.array([[1, 0, 0, 0],

[0, ρ1, 0, 0],
[0, 0, ρ2, 0],
[0, 0, 0, ρ3_2]])

info2 = Information(a22_2, c2, ub, ud)

ρ3_3 = 0
a22_3 = np.array([[1, 0, 0, 0],

[0, ρ1, 0, 0],
[0, 0, ρ2, 0],
[0, 0, 0, ρ3_3]])

info3 = Information(a22_3, c2, ub, ud)

(continues on next page)
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# Example of how we can look at the matrices associated with a given namedtuple
info1.a22

array([[1. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0.6]])

# Use tuples to define DLE class
econ1 = DLE(info1, tech1, pref1)
econ2 = DLE(info2, tech1, pref1)
econ3 = DLE(info3, tech1, pref1)

# Calculate steady-state in baseline case and use to set the initial condition
econ1.compute_steadystate(nnc=4)
x0 = econ1.zz

econ1.compute_sequence(x0, ts_length=100)

[Rosen et al., 1994] use the model to understand the sources of recurrent cycles in total cattle stocks.
Plotting 𝑦𝑡 for a simulation of their model shows its ability to generate cycles in quantities

# Calculation of y_t
totalstock = econ1.k[0] + g * econ1.k[1] + g * econ1.k[2]
fig, ax = plt.subplots()
ax.plot(totalstock)
ax.set_xlim((-1, 100))
ax.set_title('Total number of cattle')
plt.show()
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In their Figure 3, [Rosen et al., 1994] plot the impulse response functions of consumption and the breeding stock of cattle
to the demand shock, ̃𝑑𝑡, under the three different values of 𝜌3.
We replicate their Figure 3 below

shock_demand = np.array([[0], [0], [1]])

econ1.irf(ts_length=25, shock=shock_demand)
econ2.irf(ts_length=25, shock=shock_demand)
econ3.irf(ts_length=25, shock=shock_demand)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(econ1.c_irf, label=r'$\rho=0.6$')
ax1.plot(econ2.c_irf, label=r'$\rho=1$')
ax1.plot(econ3.c_irf, label=r'$\rho=0$')
ax1.set_title('Consumption response to demand shock')
ax1.legend()

ax2.plot(econ1.k_irf[:, 0], label=r'$\rho=0.6$')
ax2.plot(econ2.k_irf[:, 0], label=r'$\rho=1$')
ax2.plot(econ3.k_irf[:, 0], label=r'$\rho=0$')
ax2.set_title('Breeding stock response to demand shock')
ax2.legend()
plt.show()
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The above figures show how consumption patterns differ markedly, depending on the persistence of the demand shock:
• If it is purely transitory (𝜌3 = 0) then consumption rises immediately but is later reduced to build stocks up again.
• If it is permanent (𝜌3 = 1), then consumption falls immediately, in order to build up stocks to satisfy the permanent
rise in future demand.

In Figure 4 of their paper, [Rosen et al., 1994] plot the response to a demand shock of the breeding stock and the total
stock, for 𝜌3 = 0 and 𝜌3 = 0.6.
We replicate their Figure 4 below

total1_irf = econ1.k_irf[:, 0] + g * econ1.k_irf[:, 1] + g * econ1.k_irf[:, 2]
total3_irf = econ3.k_irf[:, 0] + g * econ3.k_irf[:, 1] + g * econ3.k_irf[:, 2]

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(econ1.k_irf[:, 0], label='Breeding Stock')
ax1.plot(total1_irf, label='Total Stock')
ax1.set_title(r'$\rho=0.6$')

ax2.plot(econ3.k_irf[:, 0], label='Breeding Stock')
ax2.plot(total3_irf, label='Total Stock')
ax2.set_title(r'$\rho=0$')
plt.show()

The fact that 𝑦𝑡 is a weighted moving average of 𝑥𝑡 creates a humped shape response of the total stock in response to
demand shocks, contributing to the cyclicality seen in the first graph of this lecture.
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Contents

• Shock Non Invertibility
– Overview

– Model

– Code

26.1 Overview

This is another member of a suite of lectures that use the quantecon DLE class to instantiate models within the [Hansen
and Sargent, 2013] class of models described in Recursive Models of Dynamic Linear Economies.
In addition to what’s in Anaconda, this lecture uses the quantecon library.

!pip install --upgrade quantecon

We’ll make these imports:

import numpy as np
import quantecon as qe
import matplotlib.pyplot as plt
from quantecon import DLE
from math import sqrt

This lecture describes an early contribution to what is now often called a news and noise issue.
In particular, it analyzes a shock-invertibility issue that is endemic within a class of permanent income models.
Technically, the invertibility problem indicates a situation in which histories of the shocks in an econometrician’s autore-
gressive or Wold moving average representation span a smaller information space than do the shocks that are seen by the
agents inside the econometrician’s model.
An econometrician who is unaware of the problem would misinterpret shocks and likely responses to them.
A shock-invertibility that is technically close to the one studied here is discussed by Eric Leeper, ToddWalker, and Susan
Yang [Leeper et al., 2013] in their analysis of fiscal foresight.
A distinct shock-invertibility issue is present in the special LQ consumption smoothing model in this quantecon lecture
Information and Consumption Smoothing.
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26.2 Model

We consider the following modification of Robert Hall’s (1978) model [Hall, 1978] in which the endowment process is
the sum of two orthogonal autoregressive processes:
Preferences

−1
2𝔼

∞
∑
𝑡=0

𝛽𝑡[(𝑐𝑡 − 𝑏𝑡)2 + 𝑙2𝑡 ]|𝐽0

𝑠𝑡 = 𝑐𝑡

𝑏𝑡 = 𝑈𝑏𝑧𝑡

Technology

𝑐𝑡 + 𝑖𝑡 = 𝛾𝑘𝑡−1 + 𝑑𝑡

𝑘𝑡 = 𝛿𝑘𝑘𝑡−1 + 𝑖𝑡

𝑔𝑡 = 𝜙1𝑖𝑡 , 𝜙1 > 0

𝑔𝑡 ⋅ 𝑔𝑡 = 𝑙2𝑡
Information

𝑧𝑡+1 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 0.9 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎦

𝑧𝑡 +

⎡
⎢
⎢
⎢
⎢
⎣

0 0
1 0
0 4
0 0
0 0
0 0

⎤
⎥
⎥
⎥
⎥
⎦

𝑤𝑡+1

𝑈𝑏 = [ 30 0 0 0 0 0 ]

𝑈𝑑 = [ 5 1 1 0.8 0.6 0.4
0 0 0 0 0 0 ]

The preference shock is constant at 30, while the endowment process is the sum of a constant and two orthogonal processes.
Specifically:

𝑑𝑡 = 5 + 𝑑1𝑡 + 𝑑2𝑡

𝑑1𝑡 = 0.9𝑑1𝑡−1 + 𝑤1𝑡

𝑑2𝑡 = 4𝑤2𝑡 + 0.8(4𝑤2𝑡−1) + 0.6(4𝑤2𝑡−2) + 0.4(4𝑤2𝑡−3)
𝑑1𝑡 is a first-order AR process, while 𝑑2𝑡 is a third-order pure moving average process.

γ_1 = 0.05
γ = np.array([[γ_1], [0]])
ϕ_c = np.array([[1], [0]])
ϕ_g = np.array([[0], [1]])
ϕ_1 = 0.00001
ϕ_i = np.array([[1], [-ϕ_1]])
δ_k = np.array([[1]])
θ_k = np.array([[1]])

(continues on next page)
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β = np.array([[1 / 1.05]])
l_λ = np.array([[0]])
π_h = np.array([[1]])
δ_h = np.array([[.9]])
θ_h = np.array([[1]]) - δ_h
ud = np.array([[5, 1, 1, 0.8, 0.6, 0.4],

[0, 0, 0, 0, 0, 0]])
a22 = np.zeros((6, 6))
# Chase's great trick
a22[[0, 1, 3, 4, 5], [0, 1, 2, 3, 4]] = np.array([1.0, 0.9, 1.0, 1.0, 1.0])
c2 = np.zeros((6, 2))
c2[[1, 2], [0, 1]] = np.array([1.0, 4.0])
ub = np.array([[30, 0, 0, 0, 0, 0]])
x0 = np.array([[5], [150], [1], [0], [0], [0], [0], [0]])

info1 = (a22, c2, ub, ud)
tech1 = (ϕ_c, ϕ_g, ϕ_i, γ, δ_k, θ_k)
pref1 = (β, l_λ, π_h, δ_h, θ_h)

econ1 = DLE(info1, tech1, pref1)

We define the household’s net of interest deficit as 𝑐𝑡 − 𝑑𝑡.
Hall’s model imposes “expected present-value budget balance” in the sense that

𝔼
∞

∑
𝑗=0

𝛽𝑗(𝑐𝑡+𝑗 − 𝑑𝑡+𝑗)|𝐽𝑡 = 𝛽−1𝑘𝑡−1 ∀𝑡

Define a moving average representation of (𝑐𝑡, 𝑐𝑡 − 𝑑𝑡) in terms of the 𝑤𝑡s to be:

[ 𝑐𝑡
𝑐𝑡 − 𝑑𝑡

] = [ 𝜎1(𝐿)
𝜎2(𝐿) ] 𝑤𝑡

Hall’s model imposes the restriction 𝜎2(𝛽) = [0 0].
• The consumer who lives inside this model observes histories of both components of the endowment process 𝑑1𝑡
and 𝑑2𝑡.

• The econometrician has data on the history of the pair [𝑐𝑡, 𝑑𝑡], but not directly on the history of 𝑤𝑡’s.
• The econometrician obtains a Wold representation for the process [𝑐𝑡, 𝑐𝑡 − 𝑑𝑡]:

[ 𝑐𝑡
𝑐𝑡 − 𝑑𝑡

] = [ 𝜎∗
1(𝐿)

𝜎∗
2(𝐿) ] 𝑢𝑡

A representation with equivalent shocks would be recovered by estimating a bivariate vector autoregression for 𝑐𝑡, 𝑐𝑡 −𝑑𝑡.
The Appendix of chapter 8 of [Hansen and Sargent, 2013] explains why the impulse response functions in the Wold
representation estimated by the econometrician do not resemble the impulse response functions that depict the response
of consumption and the net-of-interest deficit to innovations 𝑤𝑡 to the consumer’s information.
Technically, 𝜎2(𝛽) = [0 0] implies that the history of 𝑢𝑡s spans a smaller linear space than does the history of 𝑤𝑡s.
This means that 𝑢𝑡 will typically be a distributed lag of 𝑤𝑡 that is not concentrated at zero lag:

𝑢𝑡 =
∞

∑
𝑗=0

𝛼𝑗𝑤𝑡−𝑗

Thus, the econometrician’s news 𝑢𝑡 typically responds belatedly to the consumer’s news 𝑤𝑡.
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26.3 Code

We will construct Figures from Chapter 8 Appendix E of [Hansen and Sargent, 2013] to illustrate these ideas:

# This is Fig 8.E.1 from p.188 of HS2013

econ1.irf(ts_length=40, shock=None)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(econ1.c_irf, label='Consumption')
ax1.plot(econ1.c_irf - econ1.d_irf[:,0].reshape(40,1), label='Deficit')
ax1.legend()
ax1.set_title('Response to $w_{1t}$')

shock2 = np.array([[0], [1]])
econ1.irf(ts_length=40, shock=shock2)

ax2.plot(econ1.c_irf, label='Consumption')
ax2.plot(econ1.c_irf - econ1.d_irf[:,0].reshape(40, 1), label='Deficit')
ax2.legend()
ax2.set_title('Response to $w_{2t}$')
plt.show()

The above figure displays the impulse response of consumption and the net-of-interest deficit to the innovations 𝑤𝑡 to the
consumer’s non-financial income or endowment process.
Consumption displays the characteristic “random walk” response with respect to each innovation.
Each endowment innovation leads to a temporary surplus followed by a permanent net-of-interest deficit.
The temporary surplus just offsets the permanent deficit in terms of expected present value.

G_HS = np.vstack([econ1.Sc, econ1.Sc-econ1.Sd[0, :].reshape(1, 8)])
H_HS = 1e-8 * np.eye(2) # Set very small so there is no measurement error
lss_hs = qe.LinearStateSpace(econ1.A0, econ1.C, G_HS, H_HS)

hs_kal = qe.Kalman(lss_hs)
w_lss = hs_kal.whitener_lss()
ma_coefs = hs_kal.stationary_coefficients(50, 'ma')

# This is Fig 8.E.2 from p.189 of HS2013

(continues on next page)
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ma_coefs = ma_coefs
jj = 50
y1_w1 = np.empty(jj)
y2_w1 = np.empty(jj)
y1_w2 = np.empty(jj)
y2_w2 = np.empty(jj)

for t in range(jj):
y1_w1[t] = ma_coefs[t][0, 0]
y1_w2[t] = ma_coefs[t][0, 1]
y2_w1[t] = ma_coefs[t][1, 0]
y2_w2[t] = ma_coefs[t][1, 1]

# This scales the impulse responses to match those in the book
y1_w1 = sqrt(hs_kal.stationary_innovation_covar()[0, 0]) * y1_w1
y2_w1 = sqrt(hs_kal.stationary_innovation_covar()[0, 0]) * y2_w1
y1_w2 = sqrt(hs_kal.stationary_innovation_covar()[1, 1]) * y1_w2
y2_w2 = sqrt(hs_kal.stationary_innovation_covar()[1, 1]) * y2_w2

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(y1_w1, label='Consumption')
ax1.plot(y2_w1, label='Deficit')
ax1.legend()
ax1.set_title('Response to $u_{1t}$')

ax2.plot(y1_w2, label='Consumption')
ax2.plot(y2_w2, label='Deficit')
ax2.legend()
ax2.set_title('Response to $u_{2t}$')
plt.show()

The above figure displays the impulse response of consumption and the deficit to the innovations in the econometrician’s
Wold representation

• this is the object that would be recovered from a high order vector autoregression on the econometrician’s obser-
vations.

Consumption responds only to the first innovation
• this is indicative of the Granger causality imposed on the [𝑐𝑡, 𝑐𝑡−𝑑𝑡] process by Hall’s model: consumption Granger
causes 𝑐𝑡 − 𝑑𝑡, with no reverse causality.
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# This is Fig 8.E.3 from p.189 of HS2013

jj = 20
irf_wlss = w_lss.impulse_response(jj)
ycoefs = irf_wlss[1]
# Pull out the shocks
a1_w1 = np.empty(jj)
a1_w2 = np.empty(jj)
a2_w1 = np.empty(jj)
a2_w2 = np.empty(jj)

for t in range(jj):
a1_w1[t] = ycoefs[t][0, 0]
a1_w2[t] = ycoefs[t][0, 1]
a2_w1[t] = ycoefs[t][1, 0]
a2_w2[t] = ycoefs[t][1, 1]

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(a1_w1, label='Consumption innov.')
ax1.plot(a2_w1, label='Deficit innov.')
ax1.set_title('Response to $w_{1t}$')
ax1.legend()
ax2.plot(a1_w2, label='Consumption innov.')
ax2.plot(a2_w2, label='Deficit innov.')
ax2.legend()
ax2.set_title('Response to $w_{2t}$')
plt.show()

The above figure displays the impulse responses of 𝑢𝑡 to 𝑤𝑡, as depicted in:

𝑢𝑡 =
∞

∑
𝑗=0

𝛼𝑗𝑤𝑡−𝑗

While the responses of the innovations to consumption are concentrated at lag zero for both components of 𝑤𝑡, the
responses of the innovations to (𝑐𝑡 − 𝑑𝑡) are spread over time (especially in response to 𝑤1𝑡).
Thus, the innovations to (𝑐𝑡 − 𝑑𝑡) as revealed by the vector autoregression depend on what the economic agent views as
“old news”.
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CHAPTER

TWENTYSEVEN

TROUBLESHOOTING

Contents

• Troubleshooting
– Fixing Your Local Environment

– Reporting an Issue

This page is for readers experiencing errors when running the code from the lectures.

27.1 Fixing Your Local Environment

The basic assumption of the lectures is that code in a lecture should execute whenever
1. it is executed in a Jupyter notebook and
2. the notebook is running on a machine with the latest version of Anaconda Python.

You have installed Anaconda, haven’t you, following the instructions in this lecture?
Assuming that you have, the most common source of problems for our readers is that their Anaconda distribution is not
up to date.
Here’s a useful article on how to update Anaconda.
Another option is to simply remove Anaconda and reinstall.
You also need to keep the external code libraries, such as QuantEcon.py up to date.
For this task you can either

• use conda install -y quantecon on the command line, or
• execute !conda install -y quantecon within a Jupyter notebook.

If your local environment is still not working you can do two things.
First, you can use a remote machine instead, by clicking on the Launch Notebook icon available for each lecture
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Second, you can report an issue, so we can try to fix your local set up.
We like getting feedback on the lectures so please don’t hesitate to get in touch.

27.2 Reporting an Issue

One way to give feedback is to raise an issue through our issue tracker.
Please be as specific as possible. Tell us where the problem is and as much detail about your local set up as you can
provide.
Another feedback option is to use our discourse forum.
Finally, you can provide direct feedback to contact@quantecon.org
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TWENTYNINE

EXECUTION STATISTICS

This table contains the latest execution statistics.

Document Modified Method Run Time (s) Status
cattle_cycles 2024-05-01 02:00 cache 10.04 ✅
cons_news 2024-05-01 02:00 cache 5.89 ✅
cross_product_trick 2024-05-01 02:00 cache 0.85 ✅
growth_in_dles 2024-05-01 02:00 cache 5.44 ✅
hs_invertibility_example 2024-05-01 02:00 cache 5.59 ✅
hs_recursive_models 2024-05-01 02:00 cache 0.96 ✅
intro 2024-05-01 02:00 cache 0.96 ✅
irfs_in_hall_model 2024-05-01 02:00 cache 5.39 ✅
kalman 2024-05-01 02:00 cache 7.04 ✅
kalman_2 2024-05-01 02:01 cache 22.73 ✅
lagrangian_lqdp 2024-05-01 02:01 cache 19.62 ✅
linear_models 2024-05-01 02:01 cache 6.78 ✅
lq_inventories 2024-05-01 02:01 cache 12.37 ✅
lqcontrol 2024-05-01 02:02 cache 5.68 ✅
lqramsey 2024-05-01 02:02 cache 6.87 ✅
lucas_asset_pricing_dles 2024-05-01 02:02 cache 5.36 ✅
markov_jump_lq 2024-05-01 02:03 cache 73.45 ✅
muth_kalman 2024-05-01 02:03 cache 5.55 ✅
perm_income 2024-05-01 02:03 cache 3.12 ✅
perm_income_cons 2024-05-01 02:03 cache 6.63 ✅
permanent_income_dles 2024-05-01 02:03 cache 5.49 ✅
rosen_schooling_model 2024-05-01 02:03 cache 5.25 ✅
smoothing 2024-05-01 02:04 cache 5.58 ✅
smoothing_tax 2024-05-01 02:04 cache 8.09 ✅
status 2024-05-01 02:00 cache 0.96 ✅
tax_smoothing_1 2024-05-01 02:04 cache 11.71 ✅
tax_smoothing_2 2024-05-01 02:04 cache 6.07 ✅
tax_smoothing_3 2024-05-01 02:04 cache 5.96 ✅
troubleshooting 2024-05-01 02:00 cache 0.96 ✅
zreferences 2024-05-01 02:00 cache 0.96 ✅

These lectures are built on linux instances through github actions so are executed using the following hardware
specifications
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